Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Jeon BH, Chae YG, Hwang SS, Kim DK, Oak C, Park EK, et al. Multimodal imaging of sarcopeni using optical coherence tomography and ultrasound in rat model. J Opt Soc Korea. 2014;18:55-9. https://doi.org/10.3807/JOSK.2014.18.1.055
- Conchello JA, Lichtman JW. Optical sectioning microscopy. Nat Methods. 2005;2:920-31. https://doi.org/10.1038/nmeth815
- Weber M, Huisken J. Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev. 2011;21:566-72. https://doi.org/10.1016/j.gde.2011.09.009
- Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW, et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell. 2012;151:1370-85. https://doi.org/10.1016/j.cell.2012.10.008
- Wicker K, Heintzmann R. Interferometric resolution improvement for confocal microscopes. Opt Express. 2007;15:12206-16. https://doi.org/10.1364/OE.15.012206
- Kobat D, Horton NG, Xu C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt. 2011;16:106014. https://doi.org/10.1117/1.3646209
- Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73-6. https://doi.org/10.1126/science.2321027
- Richard KPB, David WP. Two-photon excitation microscopy for the study of living cells and tissues. Cell Biol. 2014;4:1124-59.
- Ammasi P, Paul S, Colten N, Raymond K. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in xenopus morphogenesis. Microsc Res Techniq. 1999;47:172-81. https://doi.org/10.1002/(SICI)1097-0029(19991101)47:3<172::AID-JEMT3>3.0.CO;2-A
- Karel S, Ryohei Y. Principle of two-photon excitation microscopy and its applications to neuroscience. Neuron. 2006;50:823-39. https://doi.org/10.1016/j.neuron.2006.05.019
- Majewska A, Yiu G, Yuste R. A custom-made two-photon microscope and deconvolution system. Pflugers Arch. 2000;441:398-408. https://doi.org/10.1007/s004240000435
- Thorling CA, Crawford D, Burczynski FJ, Liu X, Liau I, Roberts MS. Multiphoton microscopy in defining liver function. J Biomed Opt. 2014;19:90901. https://doi.org/10.1117/1.JBO.19.9.090901
- Wang JW, Wong AM, Flores J, Vosshall LB, Axel R. Two-photon calcium imaging reveals an odore-voked map of activity in the fly brain. Cell. 2003;112:271-82. https://doi.org/10.1016/S0092-8674(03)00004-7
- Oertner TG. Functional imaging of single synapses in brain slices. Exp Physiol. 2002;87:733-6. https://doi.org/10.1113/eph8702482
- Lee HS, Lee HD, Jeong MY, Kim CS. Wavelength-swept cascaded Raman fiber laser around 1300 nm for OCT imaging. J Opt Soc Korea. 2015;19:154-8. https://doi.org/10.3807/JOSK.2015.19.2.154
-
Rose CR, Kovalchuk Y, Eilers J, Konnerth A. Two-photon
$Na^+$ imaging in spines and fine dendrites of central neurons. Pflugers Arch. 1999;439:201-7. - Chatterjee K, Lin-Gibson S, Wallace WE, Parekh SH, Lee YJ, Cicerone MT, et al. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials. 2010;31:5051-62. https://doi.org/10.1016/j.biomaterials.2010.03.024
- Nagai Y, Yokoi H, Kaihara K, Naruse K. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel. Biomaterials. 2012;33:1044-51. https://doi.org/10.1016/j.biomaterials.2011.10.049
- Wang LS, Du C, Chung JE, Kurikawa M. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomater. 2012;8:1826-37. https://doi.org/10.1016/j.actbio.2012.02.002
- Sahu A, Choi WI, Tae G. A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem Commun. 2012;48:5801-940. https://doi.org/10.1039/c2cc90181a
- Lee Y, Bae JW, Oh DH, Park KM, Chun YW, Sung HJ, et al. In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. J Mater Chem B. 2013;1:2407-14. https://doi.org/10.1039/c3tb00578j
- Park KM, Jun I, Joung YK, Shin H, Park KD. In situ hydrogelation and RGD conjugation of tyramine-conjugated 4-arm PPO-PEO block copolymer for injectable bio-mimetic scaffolds. Soft Matter. 2011;7:986-92. https://doi.org/10.1039/C0SM00612B
- Lee Y, Bae JW, Lee JW, Suh W, Park KD. Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. J Mater Chem B. 2014;2:7712-8. https://doi.org/10.1039/C4TB01111B
- Wang LS, Boulaire J, Chan PPY, Chung JE, Kurikawa M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomateirals. 2010;31:8608-16. https://doi.org/10.1016/j.biomaterials.2010.07.075
- Liu XH, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30:4094-103. https://doi.org/10.1016/j.biomaterials.2009.04.024
- Silva SS, Mano JF, Reis RL. Potential applications of natural origin polymerbased systems in soft tissue regeneration. Crit Rev Biotechnol. 2010;30:200-21. https://doi.org/10.3109/07388551.2010.505561
- Huang S, Fu XB. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release. 2010;142:149-59. https://doi.org/10.1016/j.jconrel.2009.10.018
- Neffe AT, Loebus A, Zaupa A, Stoetzel C, Muller FA, Lendlein A. Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater. 2011;7:1693-701. https://doi.org/10.1016/j.actbio.2010.11.025
- Yuan SJ, Xiong G, Roguin A, Choong C. Immobilization of gelatin onto poly(glycidyl methacrylate)-grafted polycaprolactone substrates for improved cell-material interactions. Biointerphases. 2012;7:30. https://doi.org/10.1007/s13758-012-0030-1
- Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. 3rd ed. San Diego: Academic Press; 2004.
- Hoffman AS. Hydrogels for biomedical applications. Adv Drug Delivery Rev. 2002;54:3-12. https://doi.org/10.1016/S0169-409X(01)00239-3
- Kytai TN, Jennifer LW. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307-14. https://doi.org/10.1016/S0142-9612(02)00175-8
- Serafim A, Dragusin DM, Zecheru T, Dubruel P, Petre D, Ciocan LT, et al. Gelatin hydrogels: effect of ethylene oxide based synthetic crosslinking agents on the physico-chemical properties. Dig J Nanomater Bios. 2013;8:101-10.
- Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano. 2008;2:572-8. https://doi.org/10.1021/nn700349a
- Shin YC, Lee JH, Jin L, Kim MJ, Kim YJ, Hyun JK, et al. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol. 2015;13:21. https://doi.org/10.1186/s12951-015-0081-9
- Yang T, Liu L, Liu J, Chen M, Wang J. Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultra-trace cadmium. J Mater Chem. 2012;22:21909-16. https://doi.org/10.1039/c2jm34712a
- Liu Z, Jiang L, Galli F, Nederlof I, Olsthoorn RCL, Lamers GEM, et al. A graphene oxide streptavidin complex for biorecognition - towards affinity purification. Adv Funct Mater. 2010;20:2857-65. https://doi.org/10.1002/adfm.201000761
- Shin YC, Lee JH, Jin L, Kim MJ, Kim C, Hong SW, et al. Cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage/poly(lactic-co-glycolic acid) nanofibers beneficial to myoblast differentiation. J Nanosci Nanotechnol. 2015;15:7907-12. https://doi.org/10.1166/jnn.2015.11214
- Shin YC, Lee JH, Kim MJ, Hong SW, Oh JW, Kim CS, et al. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on PLGA/RGD nanofiber matrices. J Biol Eng. 2015;9:22. https://doi.org/10.1186/s13036-015-0020-1
- Shin YC, Lee JH, Jin OS, Lee EJ, Jin L, Kim C, et al. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells. J Korean Phys Soc. 2015;66:12-6. https://doi.org/10.3938/jkps.66.12
- Shin YC, Jin L, Lee JH, Jun S, Hong SW, Kim CS, et al. Graphene oxideincorporated PLGA-collagen fibrous matrices as biomimetic scaffolds for vascular smooth muscle cells. Sci Adv Mater. 2015;7:1-6. https://doi.org/10.1166/sam.2015.2002
Cited by
- Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate-Gelatin Hydrogel for Tissue Engineering vol.15, pp.1, 2016, https://doi.org/10.1007/s13770-017-0089-3
- Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis vol.29, pp.7, 2016, https://doi.org/10.1080/09205063.2017.1348738
- Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous Myogenic Differentiation vol.10, pp.None, 2016, https://doi.org/10.1021/acsmacrolett.0c00845
- Advances in gelatin-based hydrogels for wound management vol.9, pp.6, 2016, https://doi.org/10.1039/d0tb02582h
- Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications vol.22, pp.10, 2021, https://doi.org/10.3390/ijms22105378