DOI QR코드

DOI QR Code

Effects of Collagen Grafting on Cell Behaviors in BCP Scaffold with Interconnected Pore Structure

  • Yang, Dong-Jun (Department of Institute of Science & Technology, Megagen Implant) ;
  • Jeon, Jae-Hui (School of Materials Science & Engineering, Yeungnam University) ;
  • Lee, Sun-Young (Department of Institute of Science & Technology, Megagen Implant) ;
  • An, Hyun-Wook (Department of Institute of Science & Technology, Megagen Implant) ;
  • Park, Keun Oh (Department of Institute of Science & Technology, Megagen Implant) ;
  • Park, Kwang-Bum (Department of Institute of Science & Technology, Megagen Implant) ;
  • Kim, Sukyoung (School of Materials Science & Engineering, Yeungnam University)
  • 투고 : 2015.09.24
  • 심사 : 2016.01.04
  • 발행 : 2016.03.01

초록

Background: This study was to investigate the effect of collagen grafted porous biphasic calcium phosphate (BCP) on cell attachment, proliferation, and differentiation. Porous BCP scaffolds with interconnected micropore structure were prepared with were prepared and then grafted with a collagen type I. The hydroxyapatite (HA) and ${\beta}-tricalcium$ phosphate (TCP) ratio of the TCP scaffolds was about 60/40 and the collagen was crosslinked on the TCP scaffold surface (collagen-TCP). Results: The sintered BCP scaffolds showed fully interconnected micropore structures with submicron-sized grains. The collagen crosslinking in the scaffolds was conducted using the the N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide (NHS) crosslinking method. The cell proliferation of collagen-BCP scaffolds showed a similar result to that of the BCP scaffolds. However, osteoblastic differentiation and cell attachment increased in the collagen-BCP scaffolds. Conclusions: Collagen-BCP scaffold improved the cell attachment ability in early phase and osteoblastic differentiation.

키워드

과제정보

연구 과제 주관 기관 : Yeungnam University, Dae-Gyeong Leading Industry Office

참고문헌

  1. Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case J Periodontol. 1983;54:455-62.
  2. Kenney EB, Lekovic V, Han T, Carranza Jr FA, Dimitrijevic B. The use of a porous hydroxyapatite implant in periodontal defects. I. Clinical results after six months. J Periodontol. 1985;56:82-8. https://doi.org/10.1902/jop.1985.56.2.82
  3. Yukna RA, Yukna CN. A 5-year followup of 16 patients treated with coralline calcium carbonate (Biocoral) bone replacement grafts in infrabony defects. J Clin Periodontol. 1998;25:1036-40. https://doi.org/10.1111/j.1600-051X.1998.tb02410.x
  4. Zerbo IR, Zijderveld SA, De Boer A, Bronckers AL, De Lange G, Ten Bruggenkate CM, et al. Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clinical Oral Implants Research. 2004;15:724-32. https://doi.org/10.1111/j.1600-0501.2004.01055.x
  5. Simion M, Fontana F, Rasperini G, Miorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio-Oss). Clinical Oral Implants Research. 2007;18:620-9. https://doi.org/10.1111/j.1600-0501.2007.01389.x
  6. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63:408-12. https://doi.org/10.1002/jbm.10259
  7. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201-9. https://doi.org/10.1023/A:1022872421333
  8. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970;4:433-56. https://doi.org/10.1002/jbm.820040309
  9. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317-24. https://doi.org/10.1093/oxfordjournals.jbchem.a021589
  10. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133-9. https://doi.org/10.1016/S0142-9612(97)00180-4
  11. Kuboki Y, Jin Q, Kikuchi M, Mamood J, Takita H. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res. 2002;43:529-34. https://doi.org/10.1080/03008200290001104
  12. Lecomte A, Gautier H, Bouler JM, Gouyette A, Pegon Y, Daculsi G, et al. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J Biomed Mater Res B Appl Biomater. 2008;84:1-6.
  13. Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, et al. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29:266-71. https://doi.org/10.1016/j.biomaterials.2007.09.035
  14. Park JW, Kim ES, Jang JH, Suh JY, Park KB, Hanawa T. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin Oral Impl Res. 2010;21:268-76. https://doi.org/10.1111/j.1600-0501.2009.01846.x
  15. Andrianarivo AG, Robinson JA, Mann KG, Tracy RP. Growth on type I collagen promotes expression of the osteoblastic phenotype in human osteosarcoma MG-63 cells. J Cell Physiol. 1992;153:256-65. https://doi.org/10.1002/jcp.1041530205
  16. Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216:35-45. https://doi.org/10.1006/excr.1995.1005
  17. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagenalpha2beta1 integrin interaction. J Cell Physiol. 2000;184:207-13. https://doi.org/10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U
  18. Kihara T, Hirose M, Oshima A, Ohgushi H. Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2006;341:1029-35. https://doi.org/10.1016/j.bbrc.2006.01.059
  19. Teixeira S, Fernandes MH, Ferraz MP, Monteiro FJ. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J Biomed Mater Res A. 2010;95:1-8.
  20. Brkovic BM, Prasad HS, Rohrer MD, Konandreas G, Agrogiannis G, Antunovic D, et al. Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: clinical, histologic, histomorphometric, and immunohistochemical evaluation. Clin Oral Investig. 2012;16:581-90. https://doi.org/10.1007/s00784-011-0531-1
  21. Wissink MJ, Beernink R, Pieper JS, Poot AA, Engbers GH, Beugeling T, et al. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials. 2001;22:151-63. https://doi.org/10.1016/S0142-9612(00)00164-2
  22. Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, Van Aken WG, et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release. 2000;64:103-14. https://doi.org/10.1016/S0168-3659(99)00145-5
  23. Wissink MJ, Beernink R, Scharenborg NM, Poot AA, Engbers GHM, Beugeling T, et al. Endothelial cell seeding of (heparinized) collagen matrices: effects of bFGF pre-loading on proliferation (after low density seeding) and procoagulant factors. J Control Release. 2000;67:141-55. https://doi.org/10.1016/S0168-3659(00)00202-9
  24. van den Dolder J, Vehof JW, Spauwen PH, Jansen JA. Bone formation by rat bone marrow cells cultured on titanium fiber mesh: Effect of in vitro culture time. J Biomed Mater Res. 2002;62:350-8. https://doi.org/10.1002/jbm.10189
  25. Lee DW, Lee EJ, Chum SS, Ahn MW, Song IW, Kang IK, et al. Characterization of bone cell behaviors on collagen grafted hydroxyapatite surfaces. Key Eng Mater. 2008;361-363:1143-6. https://doi.org/10.4028/www.scientific.net/KEM.361-363.1143

피인용 문헌

  1. Synthetic osteoplastic materials for alveolar bone augmentation before dental implantation vol.96, pp.2, 2016, https://doi.org/10.17116/stomat201796270-74
  2. Radiopaque Hemocompatible Ruminant-Sourced Gut Material with Antimicrobial Physiognomies for Biomedical Applications in Diabetics vol.2, pp.3, 2016, https://doi.org/10.1021/acsomega.6b00373
  3. The Role of Skeletal Stem Cells in the Reconstruction of Bone Defects vol.28, pp.5, 2016, https://doi.org/10.1097/scs.0000000000003893
  4. Hard Tissue Augmentation of Aged Bone by Means of a Tin-Free PLLA-PCL Co-Polymer Exhibiting in vivo Anergy and Long-Term Structural Stability vol.65, pp.2, 2016, https://doi.org/10.1159/000494798
  5. Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold vol.49, pp.4, 2016, https://doi.org/10.5051/jpis.2019.49.4.258
  6. Influence of Human Jaw Periosteal Cells Seeded β-Tricalcium Phosphate Scaffolds on Blood Coagulation vol.22, pp.18, 2016, https://doi.org/10.3390/ijms22189942
  7. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2 vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111485