관성측정장치를 이용한 동작분석장치 개발 및 목관절 연구 동향

  • 김현호 (경희대학교 한의과대학 진단생기능의학교실)
  • Published : 2016.12.25

Abstract

Keywords

References

  1. E .-M. Malmstrom, M. Karlberg, P. A. Fransson, A. Melander, and M. Magnusson, "Primary and coupled cervical movements: The effect of age, gender, and body mass index. A 3-dimensional movement analysis of a population without symptoms of neck disorders," Spine, 2006;31(2):E44-E50. https://doi.org/10.1097/01.brs.0000194841.83419.0b
  2. C. L. Koerhuis, J. C. Winters, F. C. T. Van der Helm, and A. L. Hof, "Neck mobility measurement by means of the 'Flock of Birds' electromagnetic tracking system," Clin. Biomech., 2003;18(1):14-18. https://doi.org/10.1016/S0268-0033(02)00146-8
  3. K. M. Hermann, C. S. Reese, and A. M. Jette, "Relationships among selected measures of impairment, functional limitation, and disability in patients with cervical spine disorders," Phys. Ther., 2001;81(3):903-913.
  4. N. Strimpakos, V. Sakellari, G. Gioftsos, M. Papathanasiou, E. Brountzos, D. Kelekis, E. Kapreli, and J. Oldham, "Cervical spine ROM measurements: Optimizing the testing protocol by using a 3D ultrasound-based motion analysis system," Cephalalgia, 2005;25(12):1133-1145. https://doi.org/10.1111/j.1468-2982.2005.00970.x
  5. A. Woodhouse and O. Vasseljen, "Altered motor control patterns in whiplash and chronic neck pain," BMC Musculoskelet. Disord., 2008.
  6. V. Feipel, B. Rondelet, J.-P. Le Pallec, and M. Rooze, "Normal global motion of the cervical spine: An electrogoniometric study," Clin. Biomech., 1999;14(7):462-470. https://doi.org/10.1016/S0268-0033(98)90098-5
  7. M. J. Pearcy and S. B. Tibrewal, "Axial rotation and lateral bending in the normal lumbar spine measured by threedimensional radiography," Spine, 1984;9(6):582-587. https://doi.org/10.1097/00007632-198409000-00008
  8. M. M. Panjabi, T. Oda, J. J. Crisco III, J. Dvorak, and D. Grob, "Posture affects motion coupling patterns of the upper cervical spine," J. Orthop. Res., 1993;11(4):525-536. https://doi.org/10.1002/jor.1100110407
  9. 김현호, 김정균, 서재호, 박영재, 박영배, "관성측정장치를 이용한 동태손상증후군의 평가 가능성에 관한 고찰", 대한한의진단학회지, 2011;15(3):223-234.
  10. C. A. Buck, F. B. Dameron, M. J. Dow, and H. V. Skowlund, "Study of normal range of motion in the neck utilizing a bubble goniometer.," Arch. Phys. Med. Rehabil., 1959;40:390-392.
  11. D. Capuano-Pucci, W. Rheault, J. Aukai, M. Bracke, R. Day, and M. Pastrick, "Intratester and intertester reliability of the cervical range of motion device," Arch. Phys. Med. Rehabil., 1991;72(5):338-340.
  12. Canseco K, Albert C, Long J, Khazzam M, Marks R, Harris G. Postoperative foot and ankle kinematics in rheumatoid arthritis. Journal of Experimental & Clinical Medicine. 2011;3(5):233-238. https://doi.org/10.1016/j.jecm.2011.09.003
  13. Rahni AAA, Yahya I. Obtaining translation from a 6-DOF MEMS IMU - an overview. Proceedings of the 2007 IEEE Asia-Pacific Conference on Applied Electromagnetics Proceedings. 2007:1-5.
  14. Park Kyue-Nam, Cynn Heon-Seock, Kwon Oh-Yun, Lee Won-Hwee, Ha Sung-Min, Kim Su-Jung, Weon Jong- Hyuck. Effects of the abdominal drawing-in maneuver on muscle activity, pelvic motions, and knee flexion during active prone knee flexion in patients with lumbar extension rotation syndrome. Archives of Physical Medicine and Rehabilitation 2011;92(9):1477-1483. https://doi.org/10.1016/j.apmr.2011.03.020
  15. 유경석. V.R.전자기추적센서를 이용한 상지말단의 3차원 회전성분의 운동학적 분석. 한국체육학회지. 2000;39(2):513- 526.
  16. Chung PYM, Ng GYF. Comparison between an accelerometer and a three-dimensional motion analysis system for the detection of movement. Physiotherapy. 2011;98(3):256-259. https://doi.org/10.1016/j.physio.2011.06.003
  17. Liu T, Inoue Y, Shibata K, Tang X. A wearable inertial sensor system for human motion analysis. Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA. 2005:409-413.
  18. S. Sessa, M. Zecca, Z. Lin, L. Bartolomeo, K. Itoh, H. Ishii, Y. Mukaeda, Y. Suzuki, and A. Takanishi, "Ultra-miniaturized WB-3 Inertial Measurement Unit: Performance evaluation of the attitude estimation," in Proceedings of the IEEE International Conference on Robotics and Biomimetics, 2010;ID 57234620.
  19. Z. Lin, M. Zecca, S. Sessa, L. Bartolomeo, H. Ishii, K. Itoh, and A. Takanishi, "Development of an ultra-miniaturized inertial measurement unit WB-3 for human body motion tracking," in Proceedings of the 3rd IEEE/SICE International Symposium on System Integration, 2010;ID 5708361.
  20. A. M. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo, "Assessment of Walking Features From Foot Inertial Sensing," IEEE Trans. Biomed. Eng., 2005;52:486-494. https://doi.org/10.1109/TBME.2004.840727
  21. D. Cardarelli, "An integrated MEMS inertial measurement unit," in Proceedings of the 2002 IEEE Position Location and Navigation Symposium, 2002;314-319.
  22. A. Warnasch, A., Killen, "Low cost, high G, Micro Electro- Mechanical Systems (MEMS), Inertial Measurements Unit (IMU) program," in Proceedings of the 2002 IEEE Position Location and Navigation Symposium, 2002;299-305.
  23. R. Y. W. Saber-Sheikh, K., Bryant, E.C., Glazzard, C., Hamel, A., Lee, "Feasibility of using inertial sensors to assess human movement," Man. Ther., 2010;15(1):122-125. https://doi.org/10.1016/j.math.2009.05.009
  24. T. Ito, "Walking Motion Analysis Using 3D Acceleration Sensors," in Proceedings of the 2nd UKSim European Symposium on Computer Modelling and Simulation, 2008;ID 4625258.
  25. Kavanagh JJ, Menz HB. Accelerometry: A technique for quantifying movement patterns during walking. Gait & Posture. 2008;28:1-15. https://doi.org/10.1016/j.gaitpost.2007.10.010
  26. Mayagoitia RE, Nene AV, Veltink PH. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech. 2002;35(4):537-542. https://doi.org/10.1016/S0021-9290(01)00231-7
  27. Moe-Nilssen R. Test-retest reliability of trunk accelerometry during standing and walking. Arch Phys Med Rehabil. 1998;79(11):1377-1385. https://doi.org/10.1016/S0003-9993(98)90231-3
  28. Henriksen M, Lund H, Moe-Nilssen R, Bliddal H, Danneskoid-Samsoe B. Test-retest reliability of trunk accelerometric gait analysis. Gait & Posture. 2004;19(3):288- 297. https://doi.org/10.1016/S0966-6362(03)00069-9
  29. P. S. Theobald, M. D. Jones, and J. M. Williams, "Do inertial sensors represent a viable method to reliably measure cervical spine range of motion?," Man. Ther., 2013;17(1):92- 96. https://doi.org/10.1016/j.math.2011.06.007
  30. J. M. Williams, I. Haq, and R. Y. Lee, "A novel approach to the clinical evaluation of differential kinematics of the lumbar spine," Man. Ther., 2013;18(2):130-135. https://doi.org/10.1016/j.math.2012.08.003
  31. E. Charry, M. Umer, and S. Taylor, "Design and validation of an ambulatory inertial system for 3-D measurements of low back movements," in Proceedings of the 2011 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2011;58-63.
  32. Jasiewicz JM, Treleaven J, Condie P, Jull G. Wireless orientation sensors: Their suitability to measure head movement for neck pain assessment. Manual Therapy. 2007;12(4):380-385. https://doi.org/10.1016/j.math.2006.07.005
  33. Findlow A, Goulermas JY, Nester C, Howard D, Kenney LPJ. Predicting lower limb joint kinematics using wearable motion sensors. Gait & Posture. 2008;28(1):120-126. https://doi.org/10.1016/j.gaitpost.2007.11.001
  34. Santhiranayagam BK, Lai DTH, Begg RK, Palaniswami M. Correlations between end point foot trajectories and inertial sensor data. IEEE ISSNIP 2010. 2010;315-320.
  35. Guangyi Shi, Yuexian Zoui, Yufeng Jin, Yali Zheng, Li WJ. Multi-category human motion recognition based on MEMS inertial sensing data. Proceedings of the 2009 4th IEEE international Conference on Nano/Micro Engineered and Molecular Systems. 2009;489-493.
  36. Parnandi A, Wade E, Mataric M. Motor function assessment using wearable inertial sensors. Proceedings of the 32nd Annual International Conference of the IEEE EMBS. 2010;86-89.
  37. Wade E, Parnandi A.R, Mataric MJ. Automated administration of the wolf motor function test for post-stroke assessment. Proceedings of the 2010 4th International Conference on Pervasive Computing Technologies for Healthcare, Pervasive Health 2010.
  38. Lo G, Ashwin Ram Suresh, Stocco L, Gonzalez-Valenzuela S, Leung VCM. A wireless sensor system for motion analysis of Parkinson's disease patients. Work in Progress workshop at PerCom 2011 IEEE. 2011;372-375.
  39. Esser P, Dawes H, Collett J, Feltham MG, Howells K. Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait & Posture. 2011;34(4):558-560. https://doi.org/10.1016/j.gaitpost.2011.06.018
  40. King K, Yoon. SW, Perkins NC, Najafi K. Wireless MEMS inertial sensor system for golf swing dynamics. Sensors and Actuators A: Physical. 2008;141(2):619-630. https://doi.org/10.1016/j.sna.2007.08.028
  41. Iijima Y, Watanabe K, Kobayashi K, Kurihara Y. Measurement and analysis of tennis swing motion using 3D gyro sensor. Proceedings of the SICE Annual Conference. 2010;274-277.
  42. Kim H, Shin SH, Kim JK, Park YJ, Oh HS, Park YB. Cervical Coupling Motion Characteristics in Healthy People Using a Wireless Inertial Measurement Unit. Evidence-Based Complementary and Alternative Medicine. 2013;ID 570428.
  43. Pryce R, McDonald N. Prehospital Spinal Immobilization: Effect of Effort on Kinematics of Voluntary Head-neck Motion Assessed using Accelerometry. Prehospital and Disaster Medicine. 2015;31(1):36-42.
  44. Schiefer C, Kraus T, Ellegast RP, Ochsmann E. A technical support tool for joint range of motion determination in functional diagnostics - An inter-rater study. Journal of Occupational Medicine and Toxicology. 2015;10:16 https://doi.org/10.1186/s12995-015-0058-5
  45. Xu X, Chen KB, Lin J-H, Radwin RG. The accuracy of the Oculus Rift virtual reality head-mounted display during cervical spine mobility measurement. Journal of Biomechanics. 2015;48(4):721-724. https://doi.org/10.1016/j.jbiomech.2015.01.005
  46. Miyaoka S, Hirano H, Ashida I, Miyaoka Y, Yamada Y. Analysis of head movements coupled with trunk drift in healthy subjects. Medical and Biological Engineering and Computing. 2005;43(3):395-402. https://doi.org/10.1007/BF02345818
  47. Pancani S, Rowson J, Tindale W, Heron N, Langley J, McCarthy AD, Quinn A, Reed H, Stanton A, Shaw PJ, McDermott CJ, Mazza C. Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck muscle weakness. Clinical Biomechanics. 2016;32:201-206. https://doi.org/10.1016/j.clinbiomech.2015.11.010
  48. Yannick Tousignant-Laflamme, Nicolas B, Alexandre MD, Carol-Anne V. Reliability and criterion validity of two applications of the $iPhone^{TM}$ to measure cervical range of motion in healthy participants. Journal of NeuroEngineering and Rehabilitation. 2013;10:69. https://doi.org/10.1186/1743-0003-10-69
  49. Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G. Mobile smartphone applications for body position measurement in rehabilitation: A review of goniometric tools. PM and R. 2014;6(11):1038-1043. https://doi.org/10.1016/j.pmrj.2014.05.003
  50. Quek J, Brauer SG, Treleaven J, Pua Y-H, Mentiplay B, Clark RA. Validity and intra-rater reliability of an Android phone application to measure cervical range-of-motion. Journal of NeuroEngineering and Rehabilitation. 2014;11:65. https://doi.org/10.1186/1743-0003-11-65
  51. Boissy P, Shrier I, Briere S, Mellete J, Fecteau L, Matheson GO, Garza D, Meeuwisse WH, Segal E, Boulay J, Steele RJ. Effectiveness of cervical spine stabilization techniques. Clinical Journal of Sport Medicine. 2011;21(2):80-88. https://doi.org/10.1097/JSM.0b013e31820f8ad5
  52. Cuesta-Vargas AI, Williams J. Inertial sensor realtime feedback enhances the learning of cervical spine manipulation: A prospective study. European Spine Journal. 2014;23(11):2314-2320. https://doi.org/10.1007/s00586-014-3449-x