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Abstract 
 

Secure communication is an important aspect of today’s interconnected environments and it 
can be achieved by the use of cryptographic algorithms and protocols. However, many 
existing cryptographic mechanisms are tightly integrated into communication protocols. 
Issues emerge when security vulnerabilities are discovered in cryptographic mechanisms 
because their replacement would eventually require replacing deployed protocols. The 
concept of cryptographic agility is the solution to these issues because it allows dynamic 
switching of cryptographic algorithms and keys prior to and during the communication. Most 
of today’s secure protocols implement cryptographic agility (IPsec, SSL/TLS, SSH), but 
cryptographic agility mechanisms cannot be used in a standalone manner. In order to deal with 
the aforementioned limitations, we propose a lightweight cryptographically agile agreement 
model, which is formally verified. We also present a solution in the Agile Cryptographic 
Agreement Protocol (ACAP) that can be adapted on various network layers, architectures and 
devices. The proposed solution is able to provide existing and new communication protocols 
with secure communication prerequisites in a straightforward way without adding substantial 
communication overhead. Furthermore, it can be used between previously unknown parties in 
an opportunistic environment. The proposed model is formally verified, followed by a 
comprehensive discussion about security considerations. A prototype implementation of the 
proposed model is demonstrated and evaluated. 
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1. Introduction 

Securing data and communication channels implies the use of cryptography. To achieve 
primary security requirements (confidentiality, integrity and availability) different types of 
cryptographic algorithms are used. Cryptographic algorithms can be divided into three groups: 
symmetric encryption, asymmetric encryption and cryptographic hashes. These algorithms are 
often used in different combinations to achieve better performance and various security 
requirements. For example, digital signature combines cryptographic hashes and asymmetric 
encryption, whereas authenticated encryption combines symmetric cryptography and 
cryptographic hashes. 

There is a vast amount of cryptographic algorithms currently available. They are all 
constantly being improved and at the same time new vulnerabilities are being discovered and 
exposed. An algorithm with vulnerabilities, from the crypto analysis point of view, can still be 
safe for usage, but the identified vulnerability points to a weakness in its definition [1] [2] [3]. 
Such a weakness can eventually be used for various attacks on systems that are secured by that 
algorithm, so vulnerable algorithms should be replaced as soon as possible [4] [5] [6]. 

However, replacing cryptographic algorithms that are tightly integrated into 
communication protocols would eventually require changing the protocols themselves. This 
usually means that the running software or firmware needs to be updated. A good overview of 
the challenges and a solution for issuing firmware updates is covered in [7]. Changing 
protocols may prove to be an issue when dealing with typically large and complex 
communication systems. This is the reason why cryptographic algorithms should never be 
tightly integrated into a communication protocol and the solution is to use the concept of 
cryptographic agility [8]. Cryptographic agility is characterized by the ability to change 
cryptographic algorithms and keys while using the same protocols and deployed systems. On 
the other hand, using agility makes it possible to use the same cryptographic algorithms or 
protocols over a wide array of communication protocols thus enabling easier replacement of 
potentially insecure cryptographic algorithms. 

Cryptographic agility [9] is a known principle that is already integrated into most widely 
deployed secure channel protocols, such as IPsec [10], SSL [11], TLS [12], SSH [13]. 
However, each of the implemented agility mechanisms is strictly tied to that solution and 
cannot be easily extracted as a standalone mechanism applicable for other purposes. The 
possible solution that would enable this functionality is an adaptable cryptographically agile 
protocol that we propose in this paper. This solution could be used on various network layers, 
architectures and devices. Furthermore, the aim would be the agreement of cryptographic 
prerequisites (algorithms and keys) in order to enable various security requirements in an 
interconnected environment. Using the proposed cryptographically agile solution enables 
protection of protocols that don’t have any security mechanisms deployed and enable 
development of new secure protocols on top of the agreed primitives. 

Our lightweight and adaptable approach is easily applicable in currently emerging areas, 
such as Internet of Things (IoT). Security isn’t always integrated in current IoT solutions and 
is typically planned at a later stage as an upgrade. The communication between IoT devices 
needs to be secure which requires an agreement protocol to enable communicating parties to 
agree on a cryptographic algorithm and keys used to protect the exchanged messages. The IoT 
ecosystem needs a flexible and adaptable agreement mechanisms because IoT devices have 
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limited computing and bandwidth resources. Secure communication is possible only after 
communicating devices agree on a set of cryptographic algorithms and keys. Since IoT 
services are driven by the underlying data sources, it is critical to validate a sensor as a credible 
data source and to protect the exchanged data. 

Secure channel protocols have many components and thus tend to be fairly complex (e.g. 
SSL/TLS, IPsec, SSH). That complexity makes it hard, or even impossible in certain cases, to 
create a formal model that can be thoroughly verified to achieve provable security. The lack of 
security proofs is probably one of the causes of the recent increase of attacks on SSL/TLS as 
stated in [14]. Verification of certain solutions can also reveal previously unknown 
vulnerabilities as shown in [15]. 

Our motivation was to achieve provable security by extracting and integrating key 
exchange with algorithm agreement into a standalone solution. As a result, we designed a 
lightweight solution that is formally verified and achieves distribution of keys and algorithms 
in a provably secure manner. The conducted formal verification proves resilience to 
(pre)replay attacks [16] and man-in-the-middle attacks. The presented cryptographic agility 
solution enables lightweight and simple implementation that can be used on different network 
layers. Exchange of cryptographic keys and algorithms is preformed using only four messages 
within two round trips. It is designed to have a small amount of states to avoid implementation 
issues. It features a number of security mechanisms that are fundamental parts of the 
specification. 

In paper [17] we addressed hash agility in the SEND [18] protocol. Since the hash agility 
presents just one topic in the area of cryptographic agility, we focused on general 
cryptographic algorithm agility in [19]. Our idea is further improved in this paper by 
introducing key exchange and thus presents a complete security agility solution that 
encompasses a set of cryptographic algorithms with the required key types. 

The paper is organized as follows. In Section 2 we introduce the modeled protocol with 
message and communication description. In Section 3 we discuss the security aspects of the 
protocol. Section 4 analyses the formal security model specification and verification, while 
Section 5 evaluates our prototype protocol implementation and shows how the protocol 
behaves in a realistic environment. In Section 6 we give an overview of existing protocols with 
their strengths and weaknesses. Section 7 provides the direction of our future work and we 
conclude in Section 8. 

2. Solution description 
The goal of the proposed Agile Cryptographic Agreement Protocol (ACAP) is to give all 

secure communication prerequisites to the communicating parties. ACAP, after a successful 
exchange, provides the communicating parties with the following prerequisites:  

• A shared secret established through Diffie Hellman that can be used to provide perfect 
forward secrecy. [20]  

• Public keys used for authentication.  
• List of cryptographic algorithms supported by both communicating parties, that will 

later be used to ensure the needed security requirements.  
ACAP is based on the sign-and-mac (SIGMA) principle presented by Krawcyzk in [21]. 

SIGMA combines the Diffie-Hellman (DH) [22] key exchange, digital signature and hashed 
message authentication code (HMAC) [23] [24] in a way that prevents the attacker to mount a 
man-in-the-middle attack on the protocol (explained in Section 3). The JFK protocol [25] also 
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uses the sign-and-mac approach, which results in similar message definitions for the first two 
messages. Algorithm agreement during the message exchange is similar to the one defined for 
the SSH transport layer protocol [26]. 

2.1 Notation 
The notation used for protocol description is shown below, where the variable X/x 

represents either the initiator (I/i) or the responder (R/r):   
gX DH key exchange exponential and group info [22] 
NX nonce (unique temporary value) used for one agreement, represents a unique 

session ID that is used for the exchange 
K session key is the result of a key derivation function on the DH shared secret 

(derived from gi, r and gr, i) and both nonces. K = KDF(gir, NI, NR) 
PKX public key or certificate 
SX{} digital signature using a secret key, that can be verified with the corresponding 

public key 
HK{} HMAC using session key K 
LX list of supported cryptographic algorithms 
EX error message that contains information about the error that occurred 

 

2.2 Messages 
ACAP consists of four messages that are needed for the exchange of public keys (PKX), 

agreement on a shared secret used for generating the session key K and finally agreement on 
cryptographic algorithms that will be used for further secure communication. The messages 
are defined as follows: 

 

INITI(I→R): gi, NI 
INITR(R→I): gr, NR, PKR, SR{gr}, HK{PKR,NI,NR} 
LISTI(I→R): PKI, LI, SI{LI,gi,gr}, HK{PKI,NR,NI} 
LISTR(R→I): LR,SR{gi,gr,NI,NR,LR} 

 

The first two messages contain the Diffie-Hellman exponentials for both the initiator and 
responder that are needed for the derivation of a session key K that will be used to calculate 
HMAC protection for messages.  The second and third message are used to distribute public 
keys of the communicating parties, which are used to protect the message exchange using 
digital signatures. Even though using both HMAC and digital signatures seems redundant, this 
is not the case, and represents the base of a sign-and-mac (SIGMA) exchange [21]. The key 
idea behind SIGMA is to guarantee that the session key K is shared with the communicating 
party that owns the private key that corresponds to either the initiator (PKI) or responder (PKR). 
This is achieved by digitally signing the Diffie-Hellman exponentials and applying HMAC to 
the public key that was used to calculate the digital signature. This is to prevent binding of the 
session key K to a wrong public key and preventing a man-in-the-middle attack which is 
described in Section 3 and formally verified as described in Section 4. 
  



1216                                                                Vasić et al.: Lightweight and adaptable solution for security agility 

2.3 Message exchange 
A regular ACAP exchange is shown in Fig. 1. It includes the calculation and distribution of 

all parameters. 
The INITI message contains the first DH exponential (gi) together with the DH group info 

and the initiators nonce (NI). If the group is supported the responder answers to the challenge 
with the INITR message. 

Before sending the INITR message the responder needs to calculate the session key K, from 
the shared secret established through DH, using a key derivation function on both nonces and 
the shared secret.    

INITR contains the second DH exponential (gr) together with the responder public key 
(PKR) and nonce (NR). This message is secured by the digital signature (SR{gr}) of the 
responder’s Diffie-Hellman exponential coupled with a HMAC (HK{PKI,NR,NI}) of the 
responder public key and both nonces using the session key K established through 
Diffie-Hellman. 

Upon receipt of the INITR message the initiator calculates the session key K in the same 
way as the responder. This is needed to produce the message LISTI, which contains the 
initiators public key (PKI) together with the initiators list of supported cryptographic 
algorithms (LI). The digital signature (SI{LI,gi,gr}) protects the list, whereas the initiator’s 
public key is protected by a HMAC (HK{PKI,NR,NI}) using the DH session key K. LISTR is 
used to transfer the responders list of supported algorithms (LR), together with a digital 
signature (SR{gi,gr,NI,NR,LR}) that protects the list. 
 

Fig. 1. ACAP message exchange diagram 
 

2.4 Exception handling 
If any verification of the sent messages fails, an abort message is sent to the other party. 
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These messages can be generated in the following scenarios: incompatible DH groups, digital 
signature or HMAC verification failure, no cryptographic algorithms in common between the 
initiator and the responder. They are different for the initiator and the responder and are 
defined as follows: 
 

ABORTR(R→I): ER,NI,PKR,SR{NI,ER} 
ABORTI(I→R): EI,NR,PKI,SI{NI,EI} 

 
The ABORT messages contain the error message, nonce and public key and a digital 

signature of the nonce and error message. The digital signature is needed to avoid forgery of 
false ABORT messages that could enable possible attacks. 
 

2.5 Cryptographic algorithm agreement 
List of supported cryptographic suites and algorithms is organized according to their 

purpose. Sample lists and the agreement result with multiple algorithm categories are shown in 
Fig. 2.  
 

Fig. 2. Example algorithm lists and agreement result 
 

For cryptographic algorithm agreement we adopt the principles from the SSH transport 
layer protocol [26]. For each algorithm type in the list we choose the first algorithm in the 
client list that is also in the server list. The result of the agreement procedure is shown in Fig. 2. 
This example uses three different algorithm types (hash, secret key algorithms and public key 
algorithms), but additional cryptographic algorithms (e.g. Diffie-Hellman algorithms, key 
derivation functions, etc.) could be added to the negotiation if needed. 

All algorithms should be ordered by their respective strength and key length. Alternatively, 
they can be ordered by their preference in regards to computing speed and efficiency. A list of 
cryptographic algorithm and key length advisories can be found on the BlueKrypt site1. 

ACAP does not handle renegotiation itself. Once the algorithms and keys are agreed 
between parties, the application using ACAP should decide the duration of the negotiated 
parameters. The suggested re-keying and agreement interval is 1 hour, the usual default for 
IPsec Security Associations2. This parameter can be tuned based on the environment where 
the protocol is deployed. 

1 Keylength – Cryptographic Key Length Recommendation – http://www.keylength.com/en/ 
2 https://wiki.strongswan.org/projects/strongswan/wiki/ExpiryRekey 

Algorithm list server: 
{ 
 "hash":[ 
   "SHA3-512", 
   "SHA-512", 
   "SHA-256"], 
 "secret_key":[ 
   "AES-CTR_256", 
   "Salsa20_256", 
   "AES-CBC_128"], 
 "public_key":[ 
   "ECDSA_192", 
   "ECDSA_224", 
   "RSA_2048"] 
} 

Agreed algorithms: 
{ 
 "hash": 
   "SHA-256", 
 
 
 "secret_key": 
   "AES-CTR_256", 
 
 
 "public_key": 
   "RSA_2048" 
  
 
} 

Algorithm list client: 
{ 
 "hash":[ 
   "SHA-256", 
   "RIPEMD", 
   "SHA-1"], 
 "secret_key":[ 
   "AES-CTR_256", 
   "3DES_192", 
   "AES-CBC_128"], 
 "public_key":[ 
   "RSA_1024", 
   "RSA_2048", 
   "ECDSA_192"] 
} 
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3. Discussion and security considerations 
Our aim is to provide a lightweight protocol to simplify its integration and formal 

verification. As a result, we have minimized potential attack points on the protocol. The 
amount of features introduced in a communication protocol is directly correlated to the 
possible weaknesses in the protocol and in the protocol implementation. Therefore, we 
removed some features like renegotiation. 

The messages include only the data needed to protect the negotiation itself. Although 
nonces and DH exponentials are not contained in the messages itself they are present in the 
HMACs and digital signatures to prevent replay attacks. The sign-and-mac principle [21] is 
used to prevent man in the middle attacks because it implicitly ties the session key K 
(calculated from gi and gr DH values) to the public keys PKI and PKR that belong to the 
communicating parties. 

Partial absence of agility in the main exchange - The protocol exchange consists of only 
four messages and the entire negotiation process is always conducted with fresh nonce values. 
This makes an attack on the fixed versions of cryptographic algorithms used in ACAP 
infeasible. Even if a vulnerability was found in currently used algorithms it could hardly be in 
a way to threaten a running exchange. Therefore, only the Diffie-Hellman group info is 
exchanged and that ensures shared secrets are generated by using the best currently supported 
DH parameters and that the resulting secret has a sufficient amount of security bits. The first 
version of ACAP should be deployed by using the latest widely supported versions of 
cryptographic algorithms, such as SHA-3 hash for HMAC and elliptic curve cryptography for 
asymmetric algorithms (DH and digital signatures). It must also be noted that a trivial 
introduction of negotiating algorithms used for the ACAP exchange would require at least one 
more message and introduce more failure points that would enable the attacker to lower the 
security of the exchange to the weakest cryptographic algorithms that are currently supported. 

Computational independence of secret keys - a key part of sign-and-mac approach security 
lies in the need for computational independence of secret keys that are used to conduct the 
exchanges. Even though the keys are derived from the same shared secret they must be created 
in an independent way, as described in the appendix of [21]. After the ACAP exchange is 
conducted it outputs the algorithms that need to be used together with a secret key that is 
derived in a computationally independent way from the shared secret achieved through 
Diffie-Hellman. The shared secret is stored only in the running memory and deleted 
immediately after the exchange to prevent data leakage. 

Denial of service mitigation - To create INITR a responder should conduct the expensive 
operation of generating a safe DH prime coupled with calculating the session key K, signing 
the sent data and calculating HMAC. This is the most resource expensive operation for the 
responder and presents a potential attack point. The attacker could create a large amount of 
spoofed INITI messages, which would cause resource depletion on the responder side due to 
responding INITR messages. We mitigate this by using the same DH exponential for a short 
period of time and precomputing the more expensive part of the INITR message (SR{gr}). Thus 
the only operations a server needs to conduct upon receipt, is the calculation of the session key 
and generation of HMAC for the last part of the message (HK{PKR,NI,NR}), while everything 
else is precomputed. 

MITM prevention - In a man in the middle attack scenario, the attacker presents himself as 
the initiator to the responder and vice versa. This means that the negotiated secret keys and 
algorithms will be bound to the public keys with which they were negotiated. If the attacker 
changes the INITI message (gi, NI), and provides a different Diffie-Hellman exponential (e.g. 
gi’), it could also generate the returning INITR message by using a different set of keys and a 
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fresh DH exponential (gr’, NR, PKR’, SR’{gr’}, HK’{PKR’,NI,NR}). This would also lead to the 
changing of the session key K into K'. Subsequently all communication between the initiator 
and responder (LISTI and LISTR messages) would fail on the HMAC/digital signature 
verification and the communicating parties could not bind any negotiated results and shared 
secrets to their respective identities (public keys). Resilience to man-in-the-middle attacks has 
also been proven by the formal verification that we conducted on the security model of our 
protocol. 

Late replay prevention - The aim of the attacker can be to capture an agreement and replay 
the same agreement at a later point in time, so that the communicating sides would use old 
keys and algorithms. If the attacker sent the captured INITI message to the responder, the 
responder would generate a new nonce NR. This nonce should be used in the HMAC 
(HK{PKI,NR,NI}) contained in the LISTI message, which can’t be done in a passive replay 
scenario. An active replay scenario would involve the possibility of the attacker to change 
replayed messages. This is countered by using a different DH exponential for later exchanges. 
This means that all further HMAC verifications would fail. 

Trust establishment - ACAP enables the possibility of exchanging signed certificates 
instead of just public keys in the INITR and LISTI messages. Thus the application using our 
protocol could manage certificate verification to ensure trust between communicating parties. 
This provides the same level of trust as in SSL/TLS and IPsec by introducing the same 
independent systems that are used for guaranteeing trust. 

4. Formal model verification 
The SIGMA approach that we use in ACAP is formally verified in [27]. We needed to 

formally model and verify ACAP, due to the changes we made in regard to SIGMA. The 
modeling and verification was done using Scyther [28], an automatic verification tool for 
security protocols. 

Security requirements were defined in the security protocol description language (SPDL) 
used by Scyther [29] [30]. The security of ACAP is covered by three main requirements: 1) 
immutability of the DH exponentials, 2) secrecy of the shared secret used to derive session 
keys and 3) the inability of the attacker to interfere with the message exchange. From these 
requirements we constructed the following Scyther claims:  

1. Running(gi,gr) - The DH exponentials (gi,gr) must not be changed during the message 
exchange. This guarantees that both sides will use the same shared secret to generate 
secret keys. 

2. Secret(K) - The shared secret (i.e. session key K) must remain secret throughout the 
whole exchange. Only then we can rely on that secret to be the input into a key 
derivation function for generating session keys. 

3. Niagree(I, R) - Non-injective agreement for both communicating parties. This means 
that all messages have been sent and received without the possibility of an attacker 
interfering, consequently proving resilience to (pre-)replay and man-in-the-middle 
attacks.  

Additional security claims were specified and verified for both parties to ensure the 
security of the proposed protocol: aliveness (Alive(I, R)), weak agreement (Weakagree(I, R)) 
and non-injective synchronization (Nisynch(I, R)). These claims are satisfied if the 
non-injective agreement claim holds, because their definition is contained in the non-injective 
agreement specification [31]. The hierarchy of security properties is shown in [30]. 
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  Fig. 3. Scyther characterization outline 
 

Models in SPDL are defined by using protocols and roles. Each protocol can contain two or 
more roles that define multiple send and receive events. The modeling of protocol was done by 
defining ACAP with the initiator and responder roles in the main part. Additionally, to enable 
the specification of Diffie-Hellman primitives we used a helper (executability) protocol since 
this currently cannot be done in Scyther. [29] 

A simplified outline of the Scyther characterization, by using three parallel runs, is shown 
in Fig. 3. The figure shows two main roles (initiator I and responder R) along with the role in 
the executability protocol O, which is necessary to define that the result of DH calculation is 
the same on the initiator and responder side ((gi)r==(gr)i). The outline also shows the send (i.e. 
send_X) and receive (i.e. recv_X) events which are used to define the message exchange in 
Scyther. There is a total of two send and receive events for each of three roles used for 
verification. For further information on the verified model please refer to the full ACAP 
specification available on the link presented at the end of this section. 

Scyther assumes that all roles have access to all public keys. However, in ACAP the public 
keys need to be exchanged between the initiator and responder. Therefore, to model this 
behavior the public key has been abstracted by the corresponding role. Such a role then 
presents the identity to the same extent as a public key. 

The verification was conducted in an unbounded way without limiting the number of 
protocol runs and has shown that all defined requirements (Scyther claims) are fulfilled. The 
final verified version of the model is available on following link: http://public.tel.fer.hr/acap 

 5. Solution evaluation 
To test and evaluate the proposed protocol and to show the adaptability of our design we 

have implemented a prototype in Python. The prototype implementation can be used to 
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negotiate secure communication prerequisites on various network layers: Ethernet, IP, TCP 
and UDP. The protocol logic is shared for all communication layers which can be seen in the 
prototype code published on the same page as the formal verification model. 

All message parts are currently delimited by using a delimiter but this can easily be 
migrated to a format with prepended lengths. The delimiter is also protected by the digital 
signatures to avoid trivial attacks on the implementation. Message parts need to be delimited 
in some way because almost all of them are of variable length: DH exponential lengths depend 
on the DH group used, public key lengths can also be of different sizes based on the standard 
used, digital signatures are the same size as the public keys used, HMAC lengths are different 
based on the hash algorithms used and the algorithm list length also varies based on the 
supported cryptographic algorithms. 

We have tested our implementation by using the IMUNES3 network emulation tool on 
Linux4. The first test was done by conducting the protocol exchange with various delay values 
on the link between the initiator and responder. Total agreement time was measured on the 
initiator side and is shown in Fig. 4. The delay in both ways was increased from 0ms up to 
400ms (maximum round trip time was 800ms) and for every value a minimum of 30 
measurements was done. We performed the tests for all transport protocols (Ethernet, IP, UDP 
and TCP) with the use of standard Diffie-Hellman and RSA and with the use of elliptic curve 
Diffie-Hellman and ECDSA. Measurements for connectionless protocols (Ethernet, IP, UDP) 
did not differ from each other, while TCP agreement times demonstrate a steeper line because 
of the initial three-way handshake. Therefore, in Fig. 4 we have included only TCP and UDP 
agreement times when using standard and elliptic curve algorithms. The figure shows that 
using elliptic curve algorithms gives overall slightly better performance than using standard 
algorithms. For standard DH we used a 1024-bit mod group while for ECDH we used a 160-bit 
curve which provide similar levels of security. We also notice that network delay has a much 
greater impact than the usage of different cryptographic algorithms for the machine on which 
our measurements were performed.  
 

 
  Fig. 4. Agreement times for the initiator side 

 

A second test was conducted to measure message sizes when using different RSA public key 
sizes (768, 1024, 1536, 2048, 3072 and 4096 bits). Results are shown in Fig. 5. INITI 
messages don’t depend on public key size whereas LISTR has just one signature and scales 
accordingly. INITI messages don’t depend on public key size whereas LISTR has just one 
signature and scales accordingly. 

3 Integrated Multiprotocol Network Emulator / Simulator - http://imunes.net 
4 The tests were performed on a physical machine with a Core i7 processor and 8GB of RAM. 
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Fig. 5 also includes a line that represents the standard Ethernet MTU size of 1500 bytes. When 
using 4096 bit RSA keys the MTU limit is crossed. This can be countered by introducing 
elliptic curve public key algorithms, which are much smaller than the RSA keys used for the 
same level of security. 

 
  Fig. 5. Message size in respect to public key size 

Furthermore, we measured initiator and responder message creation and processing times 
and average values of 30 agreements over UDP are given in Table 1. The table shows that the 
initiator side has an overall higher message creation and processing time than the responder. 
The INITI message on the initiator side takes significantly more time because the initiator has 
to generate a strong Diffie-Hellman prime. Although the responder side also has to generate a 
similar prime, this is done as a background job every 30 seconds to avoid resource depletion 
and mitigate denial of service attacks. This difference is also present in the total times, which 
also include the delay caused by network communication and processing times for the other 
side of the communication. 

Table 1. Message creation and processing times for both sides 

 Initiator Responder 
 INITI 40.847 ms 4.087 ms 
 INITR 4.298 ms 0.155 ms 
 LISTI 0.358 ms 0.299 ms 
 LISTR 0.188 ms 0.290 ms 
 Total 54.128 ms 10.785 ms 

 

Our prototype implementation is available on the same web page as the verification model 
and verification results. 

5.1 Usage on different layers 
In order to implement and deploy ACAP on different layers, certain mechanisms are 

required. These mechanisms are divided into two main groups: 1) reliable transfer (TCP) and 2) 
unreliable transfer (UDP, IP, Ethernet) mechanisms. 

ACAP is a message based protocol. When using stream based reliable transfer (TCP), 
ACAP messages have to be delimited. This is done by prepending the message length to the 
message. 

Unreliable transfer protocols are message based, but we need to detect message loss that 
might occur during communication and resend the message if necessary. This issue is solved 
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in the same manner as in DTLS [32] by using the expire timer: The timer is started after 
sending the message. If the timer expires and we don’t receive an answer the message is resent. 
After one message is lost three times in a row the negotiation is aborted. There is also the 
possibility of message duplication, which we counter by detecting duplicate messages and 
discarding them in a limited time window. 

6. Related work 
In Table 2 we give an overview of existing security agility protocols and compare them by 

using certain key metrics. The first column analyzes which parameters the communicating 
parties agree upon. Usually cryptographic key and algorithm agreement should be done in the 
same exchange, because the algorithms usually can’t be used without the appropriate keys. 
Only the JFK (Just Fast Keying) protocol agrees upon just keys because the algorithm 
agreement is done in the IPsec protocol. In the communication layer column, we can see that 
JFK is designed to be used with IPsec. All other protocols except ACAP are bound to a 
specific layer and they cannot be applied to other communication layers. 

Table 2. Overview of cryptographically agile protocols 

Protocol name Key/Algorithm 
agreement 

Communication 
layer 

Scope of solution Protocol 
complexity 

Formally 
verified 

 ACAP both all layers key and algorithm 
agreement 

low yes 

 JFK[25] key bound to IPsec key agreement low yes 

 IPsec[10] both IP layer traffic protection, VPN high partially 

 SSL[11]/TLS[12] 
DTLS[32] 

both transport layer 
(stream and 
datagram) 

secure channels high partially 

 MinimaLT[14] both UDP secure channels medium partially 

 SSH[13] both application layer secure channel and shell high partially 

 Tcpcrypt[33] both TCP lightweight secure 
channels 

medium no 

 QUIC[34] both UDP lightweight secure 
HTTP transport 

medium no 

 
The fourth column shows what the protocol is designed to provide. This data is directly 

connected to the next column. As the scope of the solution grows, so does its complexity. 
Complexity refers to the number of components that are needed to achieve the scope of the 
solution.5 This is a key aspect for security protocols because it makes protocol implementation 
harder and can be the cause of many pitfalls during protocol lifetime. It also affects the 
prospects of successful formal modeling and verification. Formal verification serves as an 
external automated auditing tool and shows that the design ideas in the protocol are satisfied. 
Formal verification reduces the possibility of future problems in the protocol. 

5 SSL/TLS is composed of four components (Handshake, Change CipherSpec, Alert and Record protocols). IPsec 
is composed of at least three components (IKE, ESP, SA management plane). SSH is composed of three 
components (Transport, User Authentication and Connection  layer). 
MinimalLT, Tcpcrypt and QUIC are lightweight secure channel solutions that have two main components: a key 
exchange and a secure channel component. 
ACAP and JFK are just agreement protocols and consist of only one component. 
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6.1 Short overview of mentioned protocols 
JFK (Just Fast Keying) [25] proposes an alternative to IKE [35] key exchange protocol that 

ensures identity protection for either the initiator or the responder. The main differences with 
ACAP are as follows. We allow for negotiation of cryptographic algorithms. Our 
communicating parties are equal peers and can be used for all layers and applications. Since 
identity protection is not included our messages are somewhat simpler and take a different 
approach while using the same sign-and-mac principles. For our purposes we need two round 
trip times to establish cryptographic keys and algorithms. 

IPsec [10] is a cryptographic suite that is used to establish connection between two 
communicating endpoints through an insecure network. The most widely used scenario is to 
connect two trusted networks through the Internet. It is comprised of multiple protocols (IKE, 
ISAKMP, AH, ESP) and cryptographic algorithms. IKE and ISAKMP are implemented as 
user-space applications but they are tightly connected to the operating system kernel to 
manage Security Associations and enable proper packet processing. IPsec is used to protect all 
communication data, but this amount of protection is not always needed and can cause high 
system load for higher traffic volumes. Updating and maintaining IPsec suite can be time 
consuming and complex because of the combination of user-space and kernel-space code. 
IKE (Internet Key Exchange) [35] is a standalone protocol that is part of the IPsec protocol 
suite. It is used for exchanging keys and agreeing upon Security Associations for securing 
network communication. It is a well known and tested protocol but it is not lightweight and 
provides a various set of mechanisms. Those mechanisms can be used separately from key 
exchange and cryptographic algorithm agreement [25]. 

SSL/TLS [11] [12] provides a secure channel over a reliable TCP connection. It is used to 
protect any data that can be transferred over TCP. Algorithm implementations are integrated 
with the logic needed to establish a secure channel. SSL and TLS were both designed at the 
end of the last century and their principles have been established in a period where a lot less 
was known about secure protocol design and application of cryptographic algorithms. 
SSL/TLS is a complex system comprised of multiple protocols. Recent attacks prove the 
vulnerability of the CBC encryption mode [36], use of compression [37], TLS record protocol 
[38], use of the RC4 stream cipher [39] and introduction of the heartbeat option that enabled 
the Heartbleed attack [40]. Among design problems TLS implementations recently had 
problems with certificate management in their implementations e.g. OpenSSL and Apple [41]. 
If algorithm implementations would have been separated from the protocol logic, library 
updates would be simpler and less error prone. 

Tcpcrypt [33] is a novel and lightweight approach to the multiple problems that arose by 
the usage of SSL/TLS. Tcpcrypt implements a secure channel directly over an established 
TCP connection. The security handshake process is integrated into the TCP three-way 
handshake with the addition of only one new message. This greatly reduces the time needed to 
establish a secure connection. Only 2 round trip times (RTTs) are needed to establish a secure 
channel, while for a regular TLS session 3 RTTs are needed if the Client Hello message is sent 
in the last message of the three-way handshake. Server load is also decreased by shifting the 
RSA encryption to the client. This proves that secure channels can be built in a more efficient 
manner than SSL/TLS, at least if TCP is used as the transport protocol. In a similar way ACAP 
solves the distribution of cryptographic prerequisites independently of the application and 
purpose. 

DTLS [32] is the adaptation of TLS to datagram communication such as UDP and DCCP. 
It adds multiple mechanisms to adapt TLS to the datagram paradigm. DTLS allows 
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re-transmissions during the handshake process and arrival of out-of-order data. A similar 
re-transmission timer is also used in ACAP. DTLS doesn’t apply session termination to make 
secure channels feasible for unreliable transport. 

QUIC [34] is a new approach for transferring HTTP data over UDP in a secure way but 
with smaller latencies and system loads. It is integrated into the Chromium browser for faster 
prototyping and testing. It introduces new mechanisms to prevent IP address spoofing and 
replay attacks and reduces the number of RTTs amount needed to establish data flow. QUIC 
adapts the same method of lowering server load by using the same DH exponential for a period 
of time and pre-computing certain message parts. A similar approach is taken in JFK and 
ACAP. 

MinimaLT [14] is a new network protocol that follows a design logic similar to QUIC but 
is designed to provide higher security and implements novel mechanisms for distributing 
public keys and DH exchange exponentials by using DNS queries. Communication parties are 
mutually authenticated by using public keys, which is also applied in ACAP. A new 
non-interactive key exchange approach [42] is used to minimize RTTs while establishing 
secure connections. MinimaLT gains more flexibility by transferring all data by UDP instead 
of TCP but is strictly tied to the transportation layer.  

SSH [13] presents a widely deployed and generally secure protocol that is used for issuing 
remote commands, transferring files and tunneling network traffic. It is divided into multiple 
protocols: transport layer protocol that provides server authentication, confidentiality and 
integrity, user authentication protocol that authenticates the client and the connection protocol 
that multiplexes the established secure channel for multiple purposes (command issuing, file 
transfer, tunneling). The algorithm agreement method used in ACAP is similar to the SSH 
transport layer protocol. It handles secure distribution of keys and negotiation of cryptographic 
algorithms. 

7. Future work 
As future work, we plan to evaluate our model and protocol implementation against more 

attack methods and different attacker models. Our research will also focus on the impact of 
certain computationally expensive cryptographic operations on the message exchange and 
their adaptations so that the protocol can be used on devices of varying computing capabilities. 
In this regard, we are aware of state of the art authenticated key exchange models like HMQV 
[43] and OAKE [44] and plan to transition from the current SIGMA based exchange to a more 
lightweight model. We note that this transition must be carried out carefully and formally 
verified by using a different approach than presented in this paper. 

Furthermore, we plan to evaluate the integration of our protocol in widely used and tested 
protocols. This way, a comprehensive evaluation can be made about the impact of using 
ACAP on communication latencies. Specifically, we plan to evaluate and compare our 
implementation with IPsec and SSH mechanisms. Since ACAP is easily adaptable we will also 
deploy and evaluate it in an environment based on the Internet of Things concept. In that area 
we want to explore less computationally expensive algorithms that would enable secure 
communication on devices with less computing power. 
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8. Conclusion 
Modern protocols are often burdened with multiple layers and additions, which raise the 

possibility of vulnerabilities and attacks. In this paper we propose ACAP (Agile 
Cryptographic Agreement Protocol), that extracts the key and algorithm agreement layer to a 
dedicated lightweight and adaptable solution. By using formal verification methods we prove 
that the protocol is secure and safe from the design standpoint. The proposed protocol can be 
applied to all communication layers in the IP network stack without lowering the security level 
for communicating parties. Each communicating party is provided with all prerequisites 
needed for secure communication. This greatly simplifies usage and integration of 
cryptographic algorithms in previously unsecured protocols and eliminates the need to 
implement key distribution and management mechanisms. ACAP presents a reliable and 
integrable building block that can efficiently interoperate with other security mechanisms to 
provide secure network communication across different network layers, architectures, media 
and devices. 
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