
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, Mar. 2016 1212
Copyright ⓒ2016 KSII

Lightweight and adaptable solution for

security agility

Valter Vasić1, Miljenko Mikuc1 and Marin Vuković1
1 Faculty of Electrical Engineering and Computing

Unska 3, Zagreb, Croatia
 [e-mail: valter.vasic@fer.hr, miljenko.mikuc@fer.hr, marin.vukovic@fer.hr]

*Corresponding author: Valter Vasić

Received August 25, 2015; revised November 17, 2015; accepted February 3, 2016;
published March 31, 2016

Abstract

Secure communication is an important aspect of today’s interconnected environments and it
can be achieved by the use of cryptographic algorithms and protocols. However, many
existing cryptographic mechanisms are tightly integrated into communication protocols.
Issues emerge when security vulnerabilities are discovered in cryptographic mechanisms
because their replacement would eventually require replacing deployed protocols. The
concept of cryptographic agility is the solution to these issues because it allows dynamic
switching of cryptographic algorithms and keys prior to and during the communication. Most
of today’s secure protocols implement cryptographic agility (IPsec, SSL/TLS, SSH), but
cryptographic agility mechanisms cannot be used in a standalone manner. In order to deal with
the aforementioned limitations, we propose a lightweight cryptographically agile agreement
model, which is formally verified. We also present a solution in the Agile Cryptographic
Agreement Protocol (ACAP) that can be adapted on various network layers, architectures and
devices. The proposed solution is able to provide existing and new communication protocols
with secure communication prerequisites in a straightforward way without adding substantial
communication overhead. Furthermore, it can be used between previously unknown parties in
an opportunistic environment. The proposed model is formally verified, followed by a
comprehensive discussion about security considerations. A prototype implementation of the
proposed model is demonstrated and evaluated.

Keywords: cryptographic agility, key exchange, algorithm agreement, communication
model, model verification

http://dx.doi.org/10.3837/tiis.2016.03.015 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1213

1. Introduction

Securing data and communication channels implies the use of cryptography. To achieve
primary security requirements (confidentiality, integrity and availability) different types of
cryptographic algorithms are used. Cryptographic algorithms can be divided into three groups:
symmetric encryption, asymmetric encryption and cryptographic hashes. These algorithms are
often used in different combinations to achieve better performance and various security
requirements. For example, digital signature combines cryptographic hashes and asymmetric
encryption, whereas authenticated encryption combines symmetric cryptography and
cryptographic hashes.

There is a vast amount of cryptographic algorithms currently available. They are all
constantly being improved and at the same time new vulnerabilities are being discovered and
exposed. An algorithm with vulnerabilities, from the crypto analysis point of view, can still be
safe for usage, but the identified vulnerability points to a weakness in its definition [1] [2] [3].
Such a weakness can eventually be used for various attacks on systems that are secured by that
algorithm, so vulnerable algorithms should be replaced as soon as possible [4] [5] [6].

However, replacing cryptographic algorithms that are tightly integrated into
communication protocols would eventually require changing the protocols themselves. This
usually means that the running software or firmware needs to be updated. A good overview of
the challenges and a solution for issuing firmware updates is covered in [7]. Changing
protocols may prove to be an issue when dealing with typically large and complex
communication systems. This is the reason why cryptographic algorithms should never be
tightly integrated into a communication protocol and the solution is to use the concept of
cryptographic agility [8]. Cryptographic agility is characterized by the ability to change
cryptographic algorithms and keys while using the same protocols and deployed systems. On
the other hand, using agility makes it possible to use the same cryptographic algorithms or
protocols over a wide array of communication protocols thus enabling easier replacement of
potentially insecure cryptographic algorithms.

Cryptographic agility [9] is a known principle that is already integrated into most widely
deployed secure channel protocols, such as IPsec [10], SSL [11], TLS [12], SSH [13].
However, each of the implemented agility mechanisms is strictly tied to that solution and
cannot be easily extracted as a standalone mechanism applicable for other purposes. The
possible solution that would enable this functionality is an adaptable cryptographically agile
protocol that we propose in this paper. This solution could be used on various network layers,
architectures and devices. Furthermore, the aim would be the agreement of cryptographic
prerequisites (algorithms and keys) in order to enable various security requirements in an
interconnected environment. Using the proposed cryptographically agile solution enables
protection of protocols that don’t have any security mechanisms deployed and enable
development of new secure protocols on top of the agreed primitives.

Our lightweight and adaptable approach is easily applicable in currently emerging areas,
such as Internet of Things (IoT). Security isn’t always integrated in current IoT solutions and
is typically planned at a later stage as an upgrade. The communication between IoT devices
needs to be secure which requires an agreement protocol to enable communicating parties to
agree on a cryptographic algorithm and keys used to protect the exchanged messages. The IoT
ecosystem needs a flexible and adaptable agreement mechanisms because IoT devices have

1214 Vasić et al.: Lightweight and adaptable solution for security agility

limited computing and bandwidth resources. Secure communication is possible only after
communicating devices agree on a set of cryptographic algorithms and keys. Since IoT
services are driven by the underlying data sources, it is critical to validate a sensor as a credible
data source and to protect the exchanged data.

Secure channel protocols have many components and thus tend to be fairly complex (e.g.
SSL/TLS, IPsec, SSH). That complexity makes it hard, or even impossible in certain cases, to
create a formal model that can be thoroughly verified to achieve provable security. The lack of
security proofs is probably one of the causes of the recent increase of attacks on SSL/TLS as
stated in [14]. Verification of certain solutions can also reveal previously unknown
vulnerabilities as shown in [15].

Our motivation was to achieve provable security by extracting and integrating key
exchange with algorithm agreement into a standalone solution. As a result, we designed a
lightweight solution that is formally verified and achieves distribution of keys and algorithms
in a provably secure manner. The conducted formal verification proves resilience to
(pre)replay attacks [16] and man-in-the-middle attacks. The presented cryptographic agility
solution enables lightweight and simple implementation that can be used on different network
layers. Exchange of cryptographic keys and algorithms is preformed using only four messages
within two round trips. It is designed to have a small amount of states to avoid implementation
issues. It features a number of security mechanisms that are fundamental parts of the
specification.

In paper [17] we addressed hash agility in the SEND [18] protocol. Since the hash agility
presents just one topic in the area of cryptographic agility, we focused on general
cryptographic algorithm agility in [19]. Our idea is further improved in this paper by
introducing key exchange and thus presents a complete security agility solution that
encompasses a set of cryptographic algorithms with the required key types.

The paper is organized as follows. In Section 2 we introduce the modeled protocol with
message and communication description. In Section 3 we discuss the security aspects of the
protocol. Section 4 analyses the formal security model specification and verification, while
Section 5 evaluates our prototype protocol implementation and shows how the protocol
behaves in a realistic environment. In Section 6 we give an overview of existing protocols with
their strengths and weaknesses. Section 7 provides the direction of our future work and we
conclude in Section 8.

2. Solution description
The goal of the proposed Agile Cryptographic Agreement Protocol (ACAP) is to give all

secure communication prerequisites to the communicating parties. ACAP, after a successful
exchange, provides the communicating parties with the following prerequisites:

• A shared secret established through Diffie Hellman that can be used to provide perfect
forward secrecy. [20]

• Public keys used for authentication.
• List of cryptographic algorithms supported by both communicating parties, that will

later be used to ensure the needed security requirements.
ACAP is based on the sign-and-mac (SIGMA) principle presented by Krawcyzk in [21].

SIGMA combines the Diffie-Hellman (DH) [22] key exchange, digital signature and hashed
message authentication code (HMAC) [23] [24] in a way that prevents the attacker to mount a
man-in-the-middle attack on the protocol (explained in Section 3). The JFK protocol [25] also

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1215

uses the sign-and-mac approach, which results in similar message definitions for the first two
messages. Algorithm agreement during the message exchange is similar to the one defined for
the SSH transport layer protocol [26].

2.1 Notation
The notation used for protocol description is shown below, where the variable X/x

represents either the initiator (I/i) or the responder (R/r):
gX DH key exchange exponential and group info [22]
NX nonce (unique temporary value) used for one agreement, represents a unique

session ID that is used for the exchange
K session key is the result of a key derivation function on the DH shared secret

(derived from gi, r and gr, i) and both nonces. K = KDF(gir, NI, NR)
PKX public key or certificate
SX{} digital signature using a secret key, that can be verified with the corresponding

public key
HK{} HMAC using session key K
LX list of supported cryptographic algorithms
EX error message that contains information about the error that occurred

2.2 Messages
ACAP consists of four messages that are needed for the exchange of public keys (PKX),

agreement on a shared secret used for generating the session key K and finally agreement on
cryptographic algorithms that will be used for further secure communication. The messages
are defined as follows:

INITI(I→R): gi, NI
INITR(R→I): gr, NR, PKR, SR{gr}, HK{PKR,NI,NR}
LISTI(I→R): PKI, LI, SI{LI,gi,gr}, HK{PKI,NR,NI}
LISTR(R→I): LR,SR{gi,gr,NI,NR,LR}

The first two messages contain the Diffie-Hellman exponentials for both the initiator and
responder that are needed for the derivation of a session key K that will be used to calculate
HMAC protection for messages. The second and third message are used to distribute public
keys of the communicating parties, which are used to protect the message exchange using
digital signatures. Even though using both HMAC and digital signatures seems redundant, this
is not the case, and represents the base of a sign-and-mac (SIGMA) exchange [21]. The key
idea behind SIGMA is to guarantee that the session key K is shared with the communicating
party that owns the private key that corresponds to either the initiator (PKI) or responder (PKR).
This is achieved by digitally signing the Diffie-Hellman exponentials and applying HMAC to
the public key that was used to calculate the digital signature. This is to prevent binding of the
session key K to a wrong public key and preventing a man-in-the-middle attack which is
described in Section 3 and formally verified as described in Section 4.

1216 Vasić et al.: Lightweight and adaptable solution for security agility

2.3 Message exchange
A regular ACAP exchange is shown in Fig. 1. It includes the calculation and distribution of

all parameters.
The INITI message contains the first DH exponential (gi) together with the DH group info

and the initiators nonce (NI). If the group is supported the responder answers to the challenge
with the INITR message.

Before sending the INITR message the responder needs to calculate the session key K, from
the shared secret established through DH, using a key derivation function on both nonces and
the shared secret.

INITR contains the second DH exponential (gr) together with the responder public key
(PKR) and nonce (NR). This message is secured by the digital signature (SR{gr}) of the
responder’s Diffie-Hellman exponential coupled with a HMAC (HK{PKI,NR,NI}) of the
responder public key and both nonces using the session key K established through
Diffie-Hellman.

Upon receipt of the INITR message the initiator calculates the session key K in the same
way as the responder. This is needed to produce the message LISTI, which contains the
initiators public key (PKI) together with the initiators list of supported cryptographic
algorithms (LI). The digital signature (SI{LI,gi,gr}) protects the list, whereas the initiator’s
public key is protected by a HMAC (HK{PKI,NR,NI}) using the DH session key K. LISTR is
used to transfer the responders list of supported algorithms (LR), together with a digital
signature (SR{gi,gr,NI,NR,LR}) that protects the list.

Fig. 1. ACAP message exchange diagram

2.4 Exception handling
If any verification of the sent messages fails, an abort message is sent to the other party.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1217

These messages can be generated in the following scenarios: incompatible DH groups, digital
signature or HMAC verification failure, no cryptographic algorithms in common between the
initiator and the responder. They are different for the initiator and the responder and are
defined as follows:

ABORTR(R→I): ER,NI,PKR,SR{NI,ER}
ABORTI(I→R): EI,NR,PKI,SI{NI,EI}

The ABORT messages contain the error message, nonce and public key and a digital

signature of the nonce and error message. The digital signature is needed to avoid forgery of
false ABORT messages that could enable possible attacks.

2.5 Cryptographic algorithm agreement
List of supported cryptographic suites and algorithms is organized according to their

purpose. Sample lists and the agreement result with multiple algorithm categories are shown in
Fig. 2.

Fig. 2. Example algorithm lists and agreement result

For cryptographic algorithm agreement we adopt the principles from the SSH transport
layer protocol [26]. For each algorithm type in the list we choose the first algorithm in the
client list that is also in the server list. The result of the agreement procedure is shown in Fig. 2.
This example uses three different algorithm types (hash, secret key algorithms and public key
algorithms), but additional cryptographic algorithms (e.g. Diffie-Hellman algorithms, key
derivation functions, etc.) could be added to the negotiation if needed.

All algorithms should be ordered by their respective strength and key length. Alternatively,
they can be ordered by their preference in regards to computing speed and efficiency. A list of
cryptographic algorithm and key length advisories can be found on the BlueKrypt site1.

ACAP does not handle renegotiation itself. Once the algorithms and keys are agreed
between parties, the application using ACAP should decide the duration of the negotiated
parameters. The suggested re-keying and agreement interval is 1 hour, the usual default for
IPsec Security Associations2. This parameter can be tuned based on the environment where
the protocol is deployed.

1 Keylength – Cryptographic Key Length Recommendation – http://www.keylength.com/en/
2 https://wiki.strongswan.org/projects/strongswan/wiki/ExpiryRekey

Algorithm list server:
{
 "hash":[
 "SHA3-512",
 "SHA-512",
 "SHA-256"],
 "secret_key":[
 "AES-CTR_256",
 "Salsa20_256",
 "AES-CBC_128"],
 "public_key":[
 "ECDSA_192",
 "ECDSA_224",
 "RSA_2048"]
}

Agreed algorithms:
{
 "hash":
 "SHA-256",

 "secret_key":
 "AES-CTR_256",

 "public_key":
 "RSA_2048"

}

Algorithm list client:
{
 "hash":[
 "SHA-256",
 "RIPEMD",
 "SHA-1"],
 "secret_key":[
 "AES-CTR_256",
 "3DES_192",
 "AES-CBC_128"],
 "public_key":[
 "RSA_1024",
 "RSA_2048",
 "ECDSA_192"]
}

1218 Vasić et al.: Lightweight and adaptable solution for security agility

3. Discussion and security considerations
Our aim is to provide a lightweight protocol to simplify its integration and formal

verification. As a result, we have minimized potential attack points on the protocol. The
amount of features introduced in a communication protocol is directly correlated to the
possible weaknesses in the protocol and in the protocol implementation. Therefore, we
removed some features like renegotiation.

The messages include only the data needed to protect the negotiation itself. Although
nonces and DH exponentials are not contained in the messages itself they are present in the
HMACs and digital signatures to prevent replay attacks. The sign-and-mac principle [21] is
used to prevent man in the middle attacks because it implicitly ties the session key K
(calculated from gi and gr DH values) to the public keys PKI and PKR that belong to the
communicating parties.

Partial absence of agility in the main exchange - The protocol exchange consists of only
four messages and the entire negotiation process is always conducted with fresh nonce values.
This makes an attack on the fixed versions of cryptographic algorithms used in ACAP
infeasible. Even if a vulnerability was found in currently used algorithms it could hardly be in
a way to threaten a running exchange. Therefore, only the Diffie-Hellman group info is
exchanged and that ensures shared secrets are generated by using the best currently supported
DH parameters and that the resulting secret has a sufficient amount of security bits. The first
version of ACAP should be deployed by using the latest widely supported versions of
cryptographic algorithms, such as SHA-3 hash for HMAC and elliptic curve cryptography for
asymmetric algorithms (DH and digital signatures). It must also be noted that a trivial
introduction of negotiating algorithms used for the ACAP exchange would require at least one
more message and introduce more failure points that would enable the attacker to lower the
security of the exchange to the weakest cryptographic algorithms that are currently supported.

Computational independence of secret keys - a key part of sign-and-mac approach security
lies in the need for computational independence of secret keys that are used to conduct the
exchanges. Even though the keys are derived from the same shared secret they must be created
in an independent way, as described in the appendix of [21]. After the ACAP exchange is
conducted it outputs the algorithms that need to be used together with a secret key that is
derived in a computationally independent way from the shared secret achieved through
Diffie-Hellman. The shared secret is stored only in the running memory and deleted
immediately after the exchange to prevent data leakage.

Denial of service mitigation - To create INITR a responder should conduct the expensive
operation of generating a safe DH prime coupled with calculating the session key K, signing
the sent data and calculating HMAC. This is the most resource expensive operation for the
responder and presents a potential attack point. The attacker could create a large amount of
spoofed INITI messages, which would cause resource depletion on the responder side due to
responding INITR messages. We mitigate this by using the same DH exponential for a short
period of time and precomputing the more expensive part of the INITR message (SR{gr}). Thus
the only operations a server needs to conduct upon receipt, is the calculation of the session key
and generation of HMAC for the last part of the message (HK{PKR,NI,NR}), while everything
else is precomputed.

MITM prevention - In a man in the middle attack scenario, the attacker presents himself as
the initiator to the responder and vice versa. This means that the negotiated secret keys and
algorithms will be bound to the public keys with which they were negotiated. If the attacker
changes the INITI message (gi, NI), and provides a different Diffie-Hellman exponential (e.g.
gi’), it could also generate the returning INITR message by using a different set of keys and a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1219

fresh DH exponential (gr’, NR, PKR’, SR’{gr’}, HK’{PKR’,NI,NR}). This would also lead to the
changing of the session key K into K'. Subsequently all communication between the initiator
and responder (LISTI and LISTR messages) would fail on the HMAC/digital signature
verification and the communicating parties could not bind any negotiated results and shared
secrets to their respective identities (public keys). Resilience to man-in-the-middle attacks has
also been proven by the formal verification that we conducted on the security model of our
protocol.

Late replay prevention - The aim of the attacker can be to capture an agreement and replay
the same agreement at a later point in time, so that the communicating sides would use old
keys and algorithms. If the attacker sent the captured INITI message to the responder, the
responder would generate a new nonce NR. This nonce should be used in the HMAC
(HK{PKI,NR,NI}) contained in the LISTI message, which can’t be done in a passive replay
scenario. An active replay scenario would involve the possibility of the attacker to change
replayed messages. This is countered by using a different DH exponential for later exchanges.
This means that all further HMAC verifications would fail.

Trust establishment - ACAP enables the possibility of exchanging signed certificates
instead of just public keys in the INITR and LISTI messages. Thus the application using our
protocol could manage certificate verification to ensure trust between communicating parties.
This provides the same level of trust as in SSL/TLS and IPsec by introducing the same
independent systems that are used for guaranteeing trust.

4. Formal model verification
The SIGMA approach that we use in ACAP is formally verified in [27]. We needed to

formally model and verify ACAP, due to the changes we made in regard to SIGMA. The
modeling and verification was done using Scyther [28], an automatic verification tool for
security protocols.

Security requirements were defined in the security protocol description language (SPDL)
used by Scyther [29] [30]. The security of ACAP is covered by three main requirements: 1)
immutability of the DH exponentials, 2) secrecy of the shared secret used to derive session
keys and 3) the inability of the attacker to interfere with the message exchange. From these
requirements we constructed the following Scyther claims:

1. Running(gi,gr) - The DH exponentials (gi,gr) must not be changed during the message
exchange. This guarantees that both sides will use the same shared secret to generate
secret keys.

2. Secret(K) - The shared secret (i.e. session key K) must remain secret throughout the
whole exchange. Only then we can rely on that secret to be the input into a key
derivation function for generating session keys.

3. Niagree(I, R) - Non-injective agreement for both communicating parties. This means
that all messages have been sent and received without the possibility of an attacker
interfering, consequently proving resilience to (pre-)replay and man-in-the-middle
attacks.

Additional security claims were specified and verified for both parties to ensure the
security of the proposed protocol: aliveness (Alive(I, R)), weak agreement (Weakagree(I, R))
and non-injective synchronization (Nisynch(I, R)). These claims are satisfied if the
non-injective agreement claim holds, because their definition is contained in the non-injective
agreement specification [31]. The hierarchy of security properties is shown in [30].

1220 Vasić et al.: Lightweight and adaptable solution for security agility

 Fig. 3. Scyther characterization outline

Models in SPDL are defined by using protocols and roles. Each protocol can contain two or
more roles that define multiple send and receive events. The modeling of protocol was done by
defining ACAP with the initiator and responder roles in the main part. Additionally, to enable
the specification of Diffie-Hellman primitives we used a helper (executability) protocol since
this currently cannot be done in Scyther. [29]

A simplified outline of the Scyther characterization, by using three parallel runs, is shown
in Fig. 3. The figure shows two main roles (initiator I and responder R) along with the role in
the executability protocol O, which is necessary to define that the result of DH calculation is
the same on the initiator and responder side ((gi)r==(gr)i). The outline also shows the send (i.e.
send_X) and receive (i.e. recv_X) events which are used to define the message exchange in
Scyther. There is a total of two send and receive events for each of three roles used for
verification. For further information on the verified model please refer to the full ACAP
specification available on the link presented at the end of this section.

Scyther assumes that all roles have access to all public keys. However, in ACAP the public
keys need to be exchanged between the initiator and responder. Therefore, to model this
behavior the public key has been abstracted by the corresponding role. Such a role then
presents the identity to the same extent as a public key.

The verification was conducted in an unbounded way without limiting the number of
protocol runs and has shown that all defined requirements (Scyther claims) are fulfilled. The
final verified version of the model is available on following link: http://public.tel.fer.hr/acap

 5. Solution evaluation
To test and evaluate the proposed protocol and to show the adaptability of our design we

have implemented a prototype in Python. The prototype implementation can be used to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1221

negotiate secure communication prerequisites on various network layers: Ethernet, IP, TCP
and UDP. The protocol logic is shared for all communication layers which can be seen in the
prototype code published on the same page as the formal verification model.

All message parts are currently delimited by using a delimiter but this can easily be
migrated to a format with prepended lengths. The delimiter is also protected by the digital
signatures to avoid trivial attacks on the implementation. Message parts need to be delimited
in some way because almost all of them are of variable length: DH exponential lengths depend
on the DH group used, public key lengths can also be of different sizes based on the standard
used, digital signatures are the same size as the public keys used, HMAC lengths are different
based on the hash algorithms used and the algorithm list length also varies based on the
supported cryptographic algorithms.

We have tested our implementation by using the IMUNES3 network emulation tool on
Linux4. The first test was done by conducting the protocol exchange with various delay values
on the link between the initiator and responder. Total agreement time was measured on the
initiator side and is shown in Fig. 4. The delay in both ways was increased from 0ms up to
400ms (maximum round trip time was 800ms) and for every value a minimum of 30
measurements was done. We performed the tests for all transport protocols (Ethernet, IP, UDP
and TCP) with the use of standard Diffie-Hellman and RSA and with the use of elliptic curve
Diffie-Hellman and ECDSA. Measurements for connectionless protocols (Ethernet, IP, UDP)
did not differ from each other, while TCP agreement times demonstrate a steeper line because
of the initial three-way handshake. Therefore, in Fig. 4 we have included only TCP and UDP
agreement times when using standard and elliptic curve algorithms. The figure shows that
using elliptic curve algorithms gives overall slightly better performance than using standard
algorithms. For standard DH we used a 1024-bit mod group while for ECDH we used a 160-bit
curve which provide similar levels of security. We also notice that network delay has a much
greater impact than the usage of different cryptographic algorithms for the machine on which
our measurements were performed.

 Fig. 4. Agreement times for the initiator side

A second test was conducted to measure message sizes when using different RSA public key
sizes (768, 1024, 1536, 2048, 3072 and 4096 bits). Results are shown in Fig. 5. INITI
messages don’t depend on public key size whereas LISTR has just one signature and scales
accordingly. INITI messages don’t depend on public key size whereas LISTR has just one
signature and scales accordingly.

3 Integrated Multiprotocol Network Emulator / Simulator - http://imunes.net
4 The tests were performed on a physical machine with a Core i7 processor and 8GB of RAM.

1222 Vasić et al.: Lightweight and adaptable solution for security agility

Fig. 5 also includes a line that represents the standard Ethernet MTU size of 1500 bytes. When
using 4096 bit RSA keys the MTU limit is crossed. This can be countered by introducing
elliptic curve public key algorithms, which are much smaller than the RSA keys used for the
same level of security.

 Fig. 5. Message size in respect to public key size

Furthermore, we measured initiator and responder message creation and processing times
and average values of 30 agreements over UDP are given in Table 1. The table shows that the
initiator side has an overall higher message creation and processing time than the responder.
The INITI message on the initiator side takes significantly more time because the initiator has
to generate a strong Diffie-Hellman prime. Although the responder side also has to generate a
similar prime, this is done as a background job every 30 seconds to avoid resource depletion
and mitigate denial of service attacks. This difference is also present in the total times, which
also include the delay caused by network communication and processing times for the other
side of the communication.

Table 1. Message creation and processing times for both sides

 Initiator Responder
 INITI 40.847 ms 4.087 ms
 INITR 4.298 ms 0.155 ms
 LISTI 0.358 ms 0.299 ms
 LISTR 0.188 ms 0.290 ms
 Total 54.128 ms 10.785 ms

Our prototype implementation is available on the same web page as the verification model
and verification results.

5.1 Usage on different layers
In order to implement and deploy ACAP on different layers, certain mechanisms are

required. These mechanisms are divided into two main groups: 1) reliable transfer (TCP) and 2)
unreliable transfer (UDP, IP, Ethernet) mechanisms.

ACAP is a message based protocol. When using stream based reliable transfer (TCP),
ACAP messages have to be delimited. This is done by prepending the message length to the
message.

Unreliable transfer protocols are message based, but we need to detect message loss that
might occur during communication and resend the message if necessary. This issue is solved

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1223

in the same manner as in DTLS [32] by using the expire timer: The timer is started after
sending the message. If the timer expires and we don’t receive an answer the message is resent.
After one message is lost three times in a row the negotiation is aborted. There is also the
possibility of message duplication, which we counter by detecting duplicate messages and
discarding them in a limited time window.

6. Related work
In Table 2 we give an overview of existing security agility protocols and compare them by

using certain key metrics. The first column analyzes which parameters the communicating
parties agree upon. Usually cryptographic key and algorithm agreement should be done in the
same exchange, because the algorithms usually can’t be used without the appropriate keys.
Only the JFK (Just Fast Keying) protocol agrees upon just keys because the algorithm
agreement is done in the IPsec protocol. In the communication layer column, we can see that
JFK is designed to be used with IPsec. All other protocols except ACAP are bound to a
specific layer and they cannot be applied to other communication layers.

Table 2. Overview of cryptographically agile protocols

Protocol name Key/Algorithm
agreement

Communication
layer

Scope of solution Protocol
complexity

Formally
verified

 ACAP both all layers key and algorithm
agreement

low yes

 JFK[25] key bound to IPsec key agreement low yes

 IPsec[10] both IP layer traffic protection, VPN high partially

 SSL[11]/TLS[12]
DTLS[32]

both transport layer
(stream and
datagram)

secure channels high partially

 MinimaLT[14] both UDP secure channels medium partially

 SSH[13] both application layer secure channel and shell high partially

 Tcpcrypt[33] both TCP lightweight secure
channels

medium no

 QUIC[34] both UDP lightweight secure
HTTP transport

medium no

The fourth column shows what the protocol is designed to provide. This data is directly

connected to the next column. As the scope of the solution grows, so does its complexity.
Complexity refers to the number of components that are needed to achieve the scope of the
solution.5 This is a key aspect for security protocols because it makes protocol implementation
harder and can be the cause of many pitfalls during protocol lifetime. It also affects the
prospects of successful formal modeling and verification. Formal verification serves as an
external automated auditing tool and shows that the design ideas in the protocol are satisfied.
Formal verification reduces the possibility of future problems in the protocol.

5 SSL/TLS is composed of four components (Handshake, Change CipherSpec, Alert and Record protocols). IPsec
is composed of at least three components (IKE, ESP, SA management plane). SSH is composed of three
components (Transport, User Authentication and Connection layer).
MinimalLT, Tcpcrypt and QUIC are lightweight secure channel solutions that have two main components: a key
exchange and a secure channel component.
ACAP and JFK are just agreement protocols and consist of only one component.

1224 Vasić et al.: Lightweight and adaptable solution for security agility

6.1 Short overview of mentioned protocols
JFK (Just Fast Keying) [25] proposes an alternative to IKE [35] key exchange protocol that

ensures identity protection for either the initiator or the responder. The main differences with
ACAP are as follows. We allow for negotiation of cryptographic algorithms. Our
communicating parties are equal peers and can be used for all layers and applications. Since
identity protection is not included our messages are somewhat simpler and take a different
approach while using the same sign-and-mac principles. For our purposes we need two round
trip times to establish cryptographic keys and algorithms.

IPsec [10] is a cryptographic suite that is used to establish connection between two
communicating endpoints through an insecure network. The most widely used scenario is to
connect two trusted networks through the Internet. It is comprised of multiple protocols (IKE,
ISAKMP, AH, ESP) and cryptographic algorithms. IKE and ISAKMP are implemented as
user-space applications but they are tightly connected to the operating system kernel to
manage Security Associations and enable proper packet processing. IPsec is used to protect all
communication data, but this amount of protection is not always needed and can cause high
system load for higher traffic volumes. Updating and maintaining IPsec suite can be time
consuming and complex because of the combination of user-space and kernel-space code.
IKE (Internet Key Exchange) [35] is a standalone protocol that is part of the IPsec protocol
suite. It is used for exchanging keys and agreeing upon Security Associations for securing
network communication. It is a well known and tested protocol but it is not lightweight and
provides a various set of mechanisms. Those mechanisms can be used separately from key
exchange and cryptographic algorithm agreement [25].

SSL/TLS [11] [12] provides a secure channel over a reliable TCP connection. It is used to
protect any data that can be transferred over TCP. Algorithm implementations are integrated
with the logic needed to establish a secure channel. SSL and TLS were both designed at the
end of the last century and their principles have been established in a period where a lot less
was known about secure protocol design and application of cryptographic algorithms.
SSL/TLS is a complex system comprised of multiple protocols. Recent attacks prove the
vulnerability of the CBC encryption mode [36], use of compression [37], TLS record protocol
[38], use of the RC4 stream cipher [39] and introduction of the heartbeat option that enabled
the Heartbleed attack [40]. Among design problems TLS implementations recently had
problems with certificate management in their implementations e.g. OpenSSL and Apple [41].
If algorithm implementations would have been separated from the protocol logic, library
updates would be simpler and less error prone.

Tcpcrypt [33] is a novel and lightweight approach to the multiple problems that arose by
the usage of SSL/TLS. Tcpcrypt implements a secure channel directly over an established
TCP connection. The security handshake process is integrated into the TCP three-way
handshake with the addition of only one new message. This greatly reduces the time needed to
establish a secure connection. Only 2 round trip times (RTTs) are needed to establish a secure
channel, while for a regular TLS session 3 RTTs are needed if the Client Hello message is sent
in the last message of the three-way handshake. Server load is also decreased by shifting the
RSA encryption to the client. This proves that secure channels can be built in a more efficient
manner than SSL/TLS, at least if TCP is used as the transport protocol. In a similar way ACAP
solves the distribution of cryptographic prerequisites independently of the application and
purpose.

DTLS [32] is the adaptation of TLS to datagram communication such as UDP and DCCP.
It adds multiple mechanisms to adapt TLS to the datagram paradigm. DTLS allows

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1225

re-transmissions during the handshake process and arrival of out-of-order data. A similar
re-transmission timer is also used in ACAP. DTLS doesn’t apply session termination to make
secure channels feasible for unreliable transport.

QUIC [34] is a new approach for transferring HTTP data over UDP in a secure way but
with smaller latencies and system loads. It is integrated into the Chromium browser for faster
prototyping and testing. It introduces new mechanisms to prevent IP address spoofing and
replay attacks and reduces the number of RTTs amount needed to establish data flow. QUIC
adapts the same method of lowering server load by using the same DH exponential for a period
of time and pre-computing certain message parts. A similar approach is taken in JFK and
ACAP.

MinimaLT [14] is a new network protocol that follows a design logic similar to QUIC but
is designed to provide higher security and implements novel mechanisms for distributing
public keys and DH exchange exponentials by using DNS queries. Communication parties are
mutually authenticated by using public keys, which is also applied in ACAP. A new
non-interactive key exchange approach [42] is used to minimize RTTs while establishing
secure connections. MinimaLT gains more flexibility by transferring all data by UDP instead
of TCP but is strictly tied to the transportation layer.

SSH [13] presents a widely deployed and generally secure protocol that is used for issuing
remote commands, transferring files and tunneling network traffic. It is divided into multiple
protocols: transport layer protocol that provides server authentication, confidentiality and
integrity, user authentication protocol that authenticates the client and the connection protocol
that multiplexes the established secure channel for multiple purposes (command issuing, file
transfer, tunneling). The algorithm agreement method used in ACAP is similar to the SSH
transport layer protocol. It handles secure distribution of keys and negotiation of cryptographic
algorithms.

7. Future work
As future work, we plan to evaluate our model and protocol implementation against more

attack methods and different attacker models. Our research will also focus on the impact of
certain computationally expensive cryptographic operations on the message exchange and
their adaptations so that the protocol can be used on devices of varying computing capabilities.
In this regard, we are aware of state of the art authenticated key exchange models like HMQV
[43] and OAKE [44] and plan to transition from the current SIGMA based exchange to a more
lightweight model. We note that this transition must be carried out carefully and formally
verified by using a different approach than presented in this paper.

Furthermore, we plan to evaluate the integration of our protocol in widely used and tested
protocols. This way, a comprehensive evaluation can be made about the impact of using
ACAP on communication latencies. Specifically, we plan to evaluate and compare our
implementation with IPsec and SSH mechanisms. Since ACAP is easily adaptable we will also
deploy and evaluate it in an environment based on the Internet of Things concept. In that area
we want to explore less computationally expensive algorithms that would enable secure
communication on devices with less computing power.

1226 Vasić et al.: Lightweight and adaptable solution for security agility

8. Conclusion
Modern protocols are often burdened with multiple layers and additions, which raise the

possibility of vulnerabilities and attacks. In this paper we propose ACAP (Agile
Cryptographic Agreement Protocol), that extracts the key and algorithm agreement layer to a
dedicated lightweight and adaptable solution. By using formal verification methods we prove
that the protocol is secure and safe from the design standpoint. The proposed protocol can be
applied to all communication layers in the IP network stack without lowering the security level
for communicating parties. Each communicating party is provided with all prerequisites
needed for secure communication. This greatly simplifies usage and integration of
cryptographic algorithms in previously unsecured protocols and eliminates the need to
implement key distribution and management mechanisms. ACAP presents a reliable and
integrable building block that can efficiently interoperate with other security mechanisms to
provide secure network communication across different network layers, architectures, media
and devices.

References
[1] A. K. Yau, K. G. Paterson, and C. J. Mitchell, “Padding oracle attacks on CBC-mode

encryption with secret and random IVs,” Fast Software Encryption, pp. 299–319, Springer,
Feb. 2005. Article (CrossRef Link)

[2] T. Jager, K. G. Paterson, and J. Somorovsky, “One bad apple: Backwards compatibility attacks
on state-of-the-art cryptography,” Network & Distributed System Security Symposium, Feb.
2013.

[3] M. Lamberger and F. Mendel, “Higher-Order Differential Attack on Reduced SHA-256,”
IACR Cryptology ePrint Archive, vol. 2011, p. 37, 2011.

[4] X. Wang, Y. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,” Advances in
Cryptology–CRYPTO 2005, pp. 17-36, Aug. 2005.

[5] M. Stevens, A. Lenstra, and B. Weger, “Chosen-Prefix Collisions for MD5 and Colliding
X.509 Certificates for Different Identities,” Advances in Cryptology-EUROCRYPT 2007, pp.
1-22, May 2007. Article (CrossRef Link)

[6] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux, “Discovery and Exploitation of New Biases in
RC4,” Selected Areas in Cryptography, pp. 74–91, Springer, Aug 2010.
Article (CrossRef Link)

[7] K. Hu, T. Wolf, T. Teixeira and R. Tessier, "System-level security for network processors with
hardware monitors,” Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE,
Jun. 2014.

[8] B. Sullivan, “Cryptographic Agility: Defending Against the Sneakers Scenario,” MSDN
Magazine, Aug. 2009.

[9] M. Howard and S. Lipner, The security development lifecycle, O’Reilly Media, Incorporated,
2009.

[10] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” RFC 4301 (Proposed
Standard), Dec. 2005.

[11] A. Freier, P. Karlton, and P. Kocher, “The Secure Sockets Layer (SSL) Protocol Version 3.0,”
RFC 6101 (Historic), Aug. 2011.

[12] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC
5246 (Proposed Standard), Aug. 2008.

[13] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol Architecture,” RFC 4251
(Proposed Standard), Jan. 2006.

https://dx.doi.org/doi:10.1007/11502760_20
https://dx.doi.org/doi:10.1007/978-3-540-72540-4_1
https://dx.doi.org/doi:10.1007/978-3-642-19574-7_5

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1227

[14] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange, “MinimaLT:
minimal-latency networking through better security,” in Proc. of the 2013 ACM SIGSAC
conference on Computer & communications security, pp. 425–438, ACM, 2013.
Article (CrossRef Link)

[15] I. Lasc, R. Dojen, and T. Coffey, “On the detection of desynchronisation attacks against
security protocols that use dynamic shared secrets,” Computers & Security, vol. 32, pp. 115–
129, Nov. 2012. Article (CrossRef Link)

[16] A. D. Jurcut, T. Coffey, and R. Dojen, “Design guidelines for security protocols to prevent
replay and parallel session attacks,” Computers and Security, vol. 45, pp. 255–273, Jun. 2014.
Article (CrossRef Link)

[17] V. Vasic, A. Kukec, and M. Mikuc, “Deploying new hash algorithms in secure neighbor
discovery,” in Proc. of 2011 19th International Conference on Software Telecommunications
and Computer Networks (SoftCOM), Sept. 2011.

[18] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor Discovery (SEND),” RFC
3971 (Proposed Standard), Mar. 2005.

[19] V. Vasic and M. Mikuc, “Security agility solution independent of the underlaying protocol
architecture,” in Proc. of the First International Conference on Agreement Technologies, Oct.
2012.

[20] H. Krawczyk, “Perfect forward secrecy,” Encyclopedia of Cryptography and Security, pp.
921–922, Springer Science & Business Media, 2012.

[21] H. Krawczyk, “Sigma: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and
Its Use in the IKE Protocols,” Advances in Cryptology-CRYPTO 2003, pp. 400–425, Springer,
Aug. 2003. Article (CrossRef Link)

[22] W. Diffie and M. Hellman, “New directions in cryptography,” Information Theory, IEEE
Transactions on, vol. 22, pp. 644–654, Nov 1976. Article (CrossRef Link)

[23] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authentication,”
Advances in Cryptology — CRYPTO ’96, pp. 1–15, Springer Berlin Heidelberg, 1996.
Article (CrossRef Link)

[24] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication,” RFC 2104 (Informational), Feb. 1997.

[25] W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. Keromytis, and O. Reingold,
“Just fast keying: Key agreement in a hostile internet,” ACM Transactions on Information and
System Security (TISSEC), vol. 7, no. 2, pp. 242–273, May 2004. Article (CrossRef Link)

[26] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Transport Layer Protocol.,” RFC 4253
(Proposed Standard), Jan. 2006.

[27] R. Canetti and H. Krawczyk, “Security Analysis of IKE’s Signature-Based Key-Exchange
Protocol,” Advances in Cryptology—CRYPTO 2002, pp. 143–161, Springer, Aug. 2002.
Article (CrossRef Link)

[28] C. J. F. Cremers, Scyther: Unbounded Verification of Security Protocols, ETH, Department of
Computer Science, 2007.

[29] C. J. F. Cremers, Scyther user manual, 2014.
[30] C. J. F. Cremers, Scyther: Semantics and verification of security protocols, Eindhoven

University of Technology, 2006.
[31] G. Lowe, “A hierarchy of authentication specifications,” in Proc. of 10th Computer Security

Foundations Workshop, pp. 31–43, IEEE, 1997. Article (CrossRef Link)
[32] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2.,” RFC 6347

(Proposed Standard), Jan. 2012.
[33] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh, “The case for ubiquitous

transport-level encryption.,” USENIX Security Symposium, pp. 403–418, Aug. 2010.
[34] J. Roskind, QUIC (Quick UDP Internet Connections): Multiplexed Stream Transport Over

UDP, Dec. 2013.
[35] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet Key Exchange Protocol

Version 2 (IKEv2).,” RFC 7296 (INTERNET STANDARD), Oct. 2014.

http://dx.doi.org/10.1145/2508859.2516737
http://dx.doi.org/10.1016/j.cose.2012.10.004
https://dx.doi.org/doi:10.1016/j.cose.2014.05.010
https://dx.doi.org/doi:10.1007/978-3-540-45146-4_24
http://dx.doi.org/10.1109/TIT.1976.1055638
https://dx.doi.org/doi:10.1007/3-540-68697-5_1
http://dx.doi.org/10.1145/996943.996946
https://dx.doi.org/doi:10.1007/3-540-45708-9_10
http://dx.doi.org/10.1109/CSFW.1997.596782

1228 Vasić et al.: Lightweight and adaptable solution for security agility

[36] T. Duong and J. Rizzo, “Here come the XOR Ninjas,” White paper, Netifera, 2011.
[37] T. Be’ery and A. Shulman, “A perfect crime? only time will tell,” Black Hat Europe 2013, Mar.

2013.
[38] N. J. A. Fardan and K. Paterson, “Lucky Thirteen: Breaking the TLS and DTLS Record

Protocols,” Security and Privacy (SP), 2013 IEEE Symposium on, pp. 526–540, IEEE, May
2013. Article (CrossRef Link)

[39] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. Schuldt, “On the Security
of RC4 in TLS,” USENIX Security Symposium, pp. 305–320, Aug. 2013.

[40] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer et al., “The Matter of Heartbleed,” in Proc. of the 2014 Conference on
Internet Measurement Conference, pp. 475–488, ACM, May 2014. Article (CrossRef Link)

[41] M. Bland, “Finding More Than One Worm in the Apple,” ACM Queue vol. 12, pp. 10:10–
10:21, May 2014.

[42] E. S. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson, “Non-Interactive Key Exchange,”
Public-Key Cryptography–PKC 2013, pp. 254–271, Springer, 2013. Article (CrossRef Link)

[43] H. Krawczyk, “HMQV: A High-Performance Secure Diffie-Hellman Protocol,” in Proc. of the
25th Annual International Conference on Advances in Cryptology, CRYPTO’05, pp. 546–566,
Springer-Verlag, 2005. Article (CrossRef Link)

[44] A. C.-C. Yao and Y. Zhao, “OAKE: a new family of implicitly authenticated diffie-hellman
protocols,” in Proc. of the 2013 ACM SIGSAC conference on Computer & communications
security, CCS ’13, pp. 1113–1128, ACM, Apr. 2013. Article (CrossRef Link)

Valter Vasić received his M.Sc. degree in information and communication technology
from University of Zagreb in 2010. He is a PhD student and research associate at the
University of Zagreb, Faculty of Electrical Engineering and Computing. He was
researcher on the E-IMUNES project funded by Ericsson Nikola Tesla, Zagreb. He
published more than 10 papers in journals and conference proceedings. The focus of his
research is secure network communication. His research interests are in the area of
network communication, computer security and virtualization.

Miljenko Mikuc M.Sc. and Ph.D. degrees in electrical engineering from the University
of Zagreb, Faculty of Electrical Engineering and Computing. From 1988 he is working at
the Department of Telecommunications at FER. In December 2004 he was promoted to
Associate Professor. He was a project leader of 2 projects of Applications of Information
Technology financed by the Ministry of Science, Education and Sports of the Republic of
Croatia and the project leader of cooperation research projects with "The Boeing
Company", "International Computer Science Institute" and "The FreeBSD Foundation"
from USA and with Ericsson Nikola Tesla d.d. from Zagreb. Currently he is a project
leader of the research project: „Ericsson Customized IMUNES (E-IMUNES)“ in
cooperation with Ericsson Nikola Tesla d.d. company. He published more than 30 papers
in journals and conference proceedings in the area of communication networks, protocols,
virtualization, formal methods and security.

Marin Vuković is an Assistant Professor at the Telecommunication Department of the
Faculty of Electrical Engineering and Computing, University of Zagreb. He graduated at
the Faculty of Electrical Engineering and Computing, University of Zagreb in 2006 and
received a PhD in 2011. In scientific and professional work Marin Vukovic focuses on
value added services as well as advanced services in converged next generation networks
based on knowledge, and participates as a researcher and associate in scientific,
technological and professional projects. He published over 20 scientific papers. He is a
co-author of the patent at the Croatian Institute for Intellectual Property P20080303A.

http://dx.doi.org/10.1109/SP.2013.42
http://dx.doi.org/10.1145/2663716.2663755
https://dx.doi.org/doi:10.1007/978-3-642-36362-7_17
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1145/2508859.2516695

