DOI QR코드

DOI QR Code

New Insights into mTOR Signal Pathways in Ovarian-Related Diseases: Polycystic Ovary Syndrome and Ovarian Cancer

  • Liu, Ai Ling (Institute of Biological Science, The Key Laboratory of Biological Toxicology and Ecological Restoration of Hengyang City, School of Pharmaceutical and Biological Science, University of South China) ;
  • Liao, Hong Qing (Reproductive Health Hospital of Nanhua-Xinghui in Hengyang City) ;
  • Li, Zhi Liang (Institute of Biological Science, The Key Laboratory of Biological Toxicology and Ecological Restoration of Hengyang City, School of Pharmaceutical and Biological Science, University of South China) ;
  • Liu, Jun (Institute of Biological Science, The Key Laboratory of Biological Toxicology and Ecological Restoration of Hengyang City, School of Pharmaceutical and Biological Science, University of South China) ;
  • Zhou, Cui Lan (Department of Anatomy, University of South China) ;
  • Guo, Zi Fen (Institute of Pharmacy and Pharmacology, University of South China) ;
  • Xie, Hong Yan (Institute of Biological Science, The Key Laboratory of Biological Toxicology and Ecological Restoration of Hengyang City, School of Pharmaceutical and Biological Science, University of South China) ;
  • Peng, Cui Ying (Institute of Biological Science, The Key Laboratory of Biological Toxicology and Ecological Restoration of Hengyang City, School of Pharmaceutical and Biological Science, University of South China)
  • Published : 2016.12.01

Abstract

mTOR, the mammalian target of rapamycin, is a conserved serine/threonine kinase which belongs to the phosphatidyl-linositol kinase-related kinase (PIKK) family. It has two complexes called mTORC1 and mTORC2. It is well established that mTOR plays important roles in cell growth, proliferation and differentiation. Over-activation of the mTOR pathway is considered to have a relationship with the development of many types of diseases, including polycystic ovary syndrome (PCOS) and ovarian cancer (OC). mTOR pathway inhibitors, such as rapamycin and its derivatives, can directly or indirectly treat or relieve the symptoms of patients suffering from PCOS or OC. Moreover, mTOR inhibitors in combination with other chemical-molecular agents may have extraordinary efficacy. This paper will discuss links between mTOR signaling and PCOS and OC, and explore the mechanisms of mTOR inhibitors in treating these two diseases, with conclusions regarding the most effective therapeutic approaches.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, Natural Science Foundation of Hunan Province

References

  1. Alam H, Maizels ET, Park Y, et al (2004). Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem, 279, 19431-40. https://doi.org/10.1074/jbc.M401235200
  2. Allemand MC, Irving BA, Asmann YW, et al (2009). Effect of testosterone on insulin stimulated IRS1 Ser phosphorylation in primary rat myotubes--a potential model for PCOS-related insulin resistance. PLoS One, 4, e4274. https://doi.org/10.1371/journal.pone.0004274
  3. Ashworth RE, Wu J (2014). Mammalian target of rapamycin inhibition in hepatocellular carcinoma. World J Hepatol, 6, 776-82. https://doi.org/10.4254/wjh.v6.i11.776
  4. Badura S, Tesanovic T, Pfeifer H, et al (2013). Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One, 8, e80070. https://doi.org/10.1371/journal.pone.0080070
  5. Bai H, Li H, Li W, et al (2015). The PI3K/AKT/mTOR pathway is a potential predictor of distinct invasive and migratory capacities in human ovarian cancer cell lines. Oncotarget, 6, 25520-32. https://doi.org/10.18632/oncotarget.4550
  6. Behbakht K, Sill MW, Darcy KM, et al (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecol Oncol, 123,19-26. https://doi.org/10.1016/j.ygyno.2011.06.022
  7. Brugarolas J, Lei K, Hurley RL, et al (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev, 18, 2893-904. https://doi.org/10.1101/gad.1256804
  8. Campone M, Levy V, Bourbouloux E, et al (2009). Safety and pharmacokinetics of paclitaxel and the oral mTOR inhibitor everolimus in advanced solid tumours. Br J Cancer, 100, 315-21. https://doi.org/10.1038/sj.bjc.6604851
  9. Cheaib B, Auguste A, Leary A (2015). The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin J Cancer, 34, 4-16.
  10. Cheng Z, Guo J, Chen L, et al (2015). A long noncoding RNA AB073614 promotes tumorigenesis and predicts poor prognosis in ovarian cancer. Oncotarget, 6, 25381-9. https://doi.org/10.18632/oncotarget.4541
  11. Chon HJP, Apte S, Lee JH (2014). Phase I study of combination carboplatin, paclitaxel and ridaforolimus in patients with solid, endometrial and ovarian cancers, J Clin Oncol, 32, 2614.
  12. Dibble CC, Asara JM, Manning BD (2009). Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol, 29, 5657-70. https://doi.org/10.1128/MCB.00735-09
  13. Domecq JP, Prutsky G, Mullan RJ, et al (2013). Adverse effects of the common treatments for polycystic ovary syndrome: a systematic review and meta-analysis. J Clin Endocrinol Metab, 98, 4646-54. https://doi.org/10.1210/jc.2013-2374
  14. Gao N, Flynn DC, Zhang Z, et al (2004). G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol, 287, 281-91.
  15. Gwinn DM, Shackelford DB, Egan DF, et al (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 30, 214-26. https://doi.org/10.1016/j.molcel.2008.03.003
  16. Heitman J, Movva NR, Hall MN (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 253, 905-9. https://doi.org/10.1126/science.1715094
  17. He Z, Chen AY, Rojanasakul Y, Rankin GO, Chen YC (2016). Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1alpha/VEGF signaling pathway in ovarian cancer cells. Oncol Rep, 35, 291-7. https://doi.org/10.3892/or.2015.4354
  18. Hong Z, Xiao M, Yang Y, et al (2011). Arsenic disulfide synergizes with the phosphoinositide 3-kinase inhibitor PI-103 to eradicate acute myeloid leukemia stem cells by inducing differentiation. Carcinogenesis, 32, 1550-8. https://doi.org/10.1093/carcin/bgr176
  19. Hsu MI (2015). Clinical characteristics in Taiwanese women with polycystic ovary syndrome. Clin Exp Reprod Med, 42, 86-93. https://doi.org/10.5653/cerm.2015.42.3.86
  20. Huang S, Houghton PJ (2003). Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol, 3, 371-7. https://doi.org/10.1016/S1471-4892(03)00071-7
  21. Huang H, Chen AY, Rojanasakul Y, et al (2015). Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods, 15, 464-75. https://doi.org/10.1016/j.jff.2015.03.051
  22. Inoki K, Ouyang H, Zhu T, et al (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126, 955-68. https://doi.org/10.1016/j.cell.2006.06.055
  23. Jebahi A, Villedieu M, Petigny-Lechartier C, et al (2014). PI3K/mTOR dual inhibitor NVP-BEZ235 decreases Mcl-1 expression and sensitizes ovarian carcinoma cells to Bcl-xL-targeting strategies, provided that Bim expression is induced. Cancer Lett, 348, 38-49. https://doi.org/10.1016/j.canlet.2014.03.001
  24. Johnson SC, Rabinovitch PS, Kaeberlein M (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493, 338-45. https://doi.org/10.1038/nature11861
  25. Kim SH, Juhnn YS, Song YS (2007). Akt involvement in paclitaxel chemoresistance of human ovarian cancer cells. Ann N Y Acad Sci, 1095, 82-9. https://doi.org/10.1196/annals.1397.012
  26. Kinross KM, Montgomery KG, Kleinschmidt M, et al (2012). An activating Pi3kca mutation coupled with Pten loss is sufficient to initiate tumorigenesis in mice. J Clin Invest, 122, 553-7 https://doi.org/10.1172/JCI59309
  27. Koizume S, Miyagi Y (2015). Tissue factor-factor VII complex as a key regulator of ovarian cancer phenotypes. Biomark Cancer, 7, 1-13.
  28. Kollmannsberger C, Hirte H, Siu LL, et al (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Ann Oncol, 23, 238-44. https://doi.org/10.1093/annonc/mdr063
  29. Laplante M, Sabatini DM (2012). mTOR signaling in growth control and disease. Cell, 149, 274-93. https://doi.org/10.1016/j.cell.2012.03.017
  30. Lee d Y (2015). Roles of mTOR Signaling in Brain Development. Exp Neurobiol, 24, 177-85. https://doi.org/10.5607/en.2015.24.3.177
  31. Lengyel E (2010). Ovarian cancer development and metastasis. Am J Pathol, 177, 1053-64. https://doi.org/10.2353/ajpath.2010.100105
  32. Li C, Liu VW, Chan DW, Yao KM, Ngan HY (2012). LY294002 and metformin cooperatively enhance the inhibition of growth and the induction of apoptosis of ovarian cancer cells. Int J Gynecol Cancer, 22, 15-22. https://doi.org/10.1097/IGC.0b013e3182322834
  33. Lipton JO, Sahin M (2014). The neurology of mTOR. Neuron, 84, 275-91. https://doi.org/10.1016/j.neuron.2014.09.034
  34. Liu M, Qi Z, Liu B, et al (2015). RY-2f, an isoflavone analog, overcomes cisplatin resistance to inhibit ovarian tumorigenesis via targeting the PI3K/AKT/mTOR signaling pathway. Oncotarget, 6, 25281-94. https://doi.org/10.18632/oncotarget.4634
  35. Li X, Cui P, Jiang HY, et al (2015). Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res, 7, 574-86.
  36. Lyu D, Yu W, Tang N, et al (2013). The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Mol Pain, 9, 64.
  37. Mallon R, Feldberg LR, Lucas J, et al (2011). Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clin Cancer Res, 17, 3193-203. https://doi.org/10.1158/1078-0432.CCR-10-1694
  38. McCartney CR, Eagleson CA, Marshall JC (2002). Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin Reprod Med, 20, 317-26. https://doi.org/10.1055/s-2002-36706
  39. Mok SC, Kwong J, Welch WR, et al (2007). Etiology and pathogenesis of epithelial ovarian cancer. Dis Markers, 23, 367-76. https://doi.org/10.1155/2007/474320
  40. Montero JC, Chen X, Ocana A, Pandiella A (2012). Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: therapeutic implications. Mol Cancer Ther, 11, 1342-52. https://doi.org/10.1158/1535-7163.MCT-11-0723
  41. Muralidhar GG, Barbolina MV (2015). The miR-200 family: versatile players in epithelial ovarian cancer. Int J Mol Sci, 16, 16833-47. https://doi.org/10.3390/ijms160816833
  42. Ohta T, Ohmichi M, Hayasaka T, et al (2006). Inhibition of phosphatidylinositol 3-kinase increases efficacy of cisplatin in in vivo ovarian cancer models. Endocrinology, 147, 1761-9. https://doi.org/10.1210/en.2005-1450
  43. Rescigno P, Cerillo I, Ruocco R, et al (2013). New hypothesis on pathogenesis of ovarian cancer lead to future tailored approaches. Biomed Res Int, 2013, 852839.
  44. Roa J, Garcia-Galiano D, Varela L, et al (2009). The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology, 150, 5016-26. https://doi.org/10.1210/en.2009-0096
  45. Sancak Y, Thoreen CC, Peterson TR, et al (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell, 25, 903-15. https://doi.org/10.1016/j.molcel.2007.03.003
  46. Schlosshauer PW, Li W, Lin KT, Chan JL, Wang LH (2009). Rapamycin by itself and additively in combination with carboplatin inhibits the growth of ovarian cancer cells. Gynecol Oncol, 114, 516-22. https://doi.org/10.1016/j.ygyno.2009.06.002
  47. Sciarretta S, Volpe M, Sadoshima J (2014). Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res, 114, 549-64. https://doi.org/10.1161/CIRCRESAHA.114.302022
  48. Shah KN, Patel SS (2016). Phosphatidylinositide 3-kinase inhibition: A new potential target for the treatment of polycystic ovarian syndrome. Pharm Biol, 54, 975-83. https://doi.org/10.3109/13880209.2015.1091482
  49. Sivalingam VN, Myers J, Nicholas S, Balen AH, Crosbie EJ (2014). Metformin in reproductive health, pregnancy and gynaecological cancer: established and emerging indications. Hum Reprod Update, 20, 853-68. https://doi.org/10.1093/humupd/dmu037
  50. Swaroop A, Jaipuriar AS, Gupta SK, et al (2015). Efficacy of a novel fenugreek seed extract (Trigonella foenum-graecum, Furocyst) in polycystic ovary syndrome (PCOS). Int J Med Sci, 12, 825-31. https://doi.org/10.7150/ijms.13024
  51. Takano M, Kikuchi Y, Kudoh K, et al (2011). Weekly administration of temsirolimus for heavily pretreated patients with clear cell carcinoma of the ovary: a report of six cases. Int J Clin Oncol, 16, 605-9. https://doi.org/10.1007/s10147-010-0177-z
  52. Tao K, Yin Y, Shen Q, et al (2016). Akt inhibitor MK-2206 enhances the effect of cisplatin in gastric cancer cells. Biomed Rep, 4, 365-68. https://doi.org/10.3892/br.2016.594
  53. Tessaro I, Modina SC, Franciosi F, et al (2015). Effect of oral administration of low-dose follicle stimulating hormone on hyperandrogenized mice as a model of polycystic ovary syndrome. J Ovarian Res, 8, 64. https://doi.org/10.1186/s13048-015-0192-9
  54. Tsikouras P, Spyros L, Manav B, et al (2015). Features of polycystic Ovary Syndrome in adolescence. J Med Life, 8, 291-6.
  55. Yaba A, Bianchi V, Borini A, Johnson J (2008). A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod Sci, 15, 128-38. https://doi.org/10.1177/1933719107312037
  56. Yaba A, Demir N (2012). The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovarian Res, 5, 38. https://doi.org/10.1186/1757-2215-5-38
  57. Yang YM, Choi EJ (2015). Efficacy and safety of metformin or oral contraceptives, or both in polycystic ovary syndrome. Ther Clin Risk Manag, 11, 1345-53.
  58. Yap TA, Garrett MD, Walton MI, et al (2008). Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol, 8, 393-412. https://doi.org/10.1016/j.coph.2008.08.004
  59. Yip PY (2015). Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res, 4, 165-76.
  60. Yuan R, Kay A, Berg WJ, Lebwohl D (2009). Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol, 2, 45. https://doi.org/10.1186/1756-8722-2-45
  61. Zhang HY, Zhang YF, Han YK, et al (2012). Activation and significance of the PI3K/Akt pathway in endometrium with polycystic ovary syndrome patients. Zhonghua Fu Chan Ke Za Zhi, 47, 19-23.
  62. Zhang S, Lu Z, Mao W, et al (2015). CDK5 regulates paclitaxel sensitivity in ovarian cancer cells by modulating AKT Activation, p21Cip1- and p27Kip1-mediated G1 cell cycle arrest and apoptosis. PLoS One, 10, e0131833 https://doi.org/10.1371/journal.pone.0131833
  63. Zhang D, Xia H, Zhang W, Fang B (2016). The anti-ovarian cancer activity by WYE-132, a mTORC1/2 dual inhibitor. Tumour Biol, 37, 1327-36. https://doi.org/10.1007/s13277-015-3922-0
  64. Zhang Y, Zheng Y, Faheem A, et al (2016). A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type. Oncol Lett, 11, 1685-92. https://doi.org/10.3892/ol.2016.4111
  65. Zhao Y, Zhang C, Huang Y, et al (2015). Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-kappaB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Meta, 100, 201-11. https://doi.org/10.1210/jc.2014-2419
  66. Zhu T, Yuan J, Wang Y, et al (2015). MiR-661 contributed to cell proliferation of human ovarian cancer cells by repressing INPP5J expression. Biomed Pharmacother, 75, 123-8. https://doi.org/10.1016/j.biopha.2015.07.023
  67. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011). Activation of mTORC2 by association with the ribosome. Cell, 144, 757-68. https://doi.org/10.1016/j.cell.2011.02.014