Inhibition of Oxidative Stress and Enhancement of Cellular Activity by Mushroom Lectins in Arsenic Induced Carcinogenesis

  • Rana, Tanmoy (Indian Veterinary Research Institute, Eastern Regional Station) ;
  • Bera, Asit Kumar (Indian Veterinary Research Institute, Eastern Regional Station) ;
  • Das, Subhashree (Indian Veterinary Research Institute, Eastern Regional Station) ;
  • Bhattacharya, Debasis (Indian Veterinary Research Institute, Eastern Regional Station) ;
  • Pan, Diganta (Indian Veterinary Research Institute, Eastern Regional Station) ;
  • Das, Subrata Kumar (Indian Veterinary Research Institute, Eastern Regional Station)
  • Published : 2016.09.01

Abstract

Chronic arsenicosis is a major environmental health hazard throughout the world, including India. Animals and human beings are affected due to drinking of arsenic contaminated ground water, due to natural mineral deposits, arsenical pesticides or improperly disposed arsenical chemicals. Arsenic causes cancer with production of free radicals and reactive oxygen species (ROS) that are neutralized by an elaborate antioxidant defense system consisting of enzymes and numerous non-enzymatic antioxidants. Dietary antioxidant supplements are useful to counteract the carcinogenesis effects of arsenic. Oyster mushroom lectins can be regarded as ingredients of popular foods with biopharmaceutical properties. A variety of compounds have been isolated from mushrooms, which include polysaccharides and polysaccharopeptides with immune-enhancing effects. Lectins are beneficial in reducing arsenic toxicity due to anticarcinogenetic roles and may have therapeutic application in people suffering from chronic exposure to arsenic from natural sources, a global problem that is especially relevant to millions of people on the Indian subcontinent.

Keywords

Acknowledgement

Supported by : Indian Veterinary Research Institute

References

  1. Alnemri ES, Livingston DJ, Nicholson DW, et al (1996). Human ICE/CED-3 protease nomenclature. Cell, 87,171. https://doi.org/10.1016/S0092-8674(00)81334-3
  2. Aposhian HV, Aposhian MM, (2006). Arsenic Toxicology, Five Questions. Chem Res Toxicol, 19, 1-60. https://doi.org/10.1021/tx050106d
  3. Bae,M, Watanabe C, Inaoka T, et al (2002). Arsenic in cooked rice in Bangladesh. Lancet, 360, 1839-40. https://doi.org/10.1016/S0140-6736(02)11738-7
  4. Bagnyukova TV, Luzhna LI, Pogribny IP, et al (2007). Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mut, 48, 658-65. https://doi.org/10.1002/em.20328
  5. Barchowsky A, Dudek EJ, Treadwell MD, et al (1996). Arsenic induces oxidative stress and NF-kB activation in cultured aortic endothelial cells. Free Radic Biol Med, 21, 783-90. https://doi.org/10.1016/0891-5849(96)00174-8
  6. Bashir S, Sharma Y, Irshad M, et al (2006). Arsenic-induced cell death in liver and brain of experimental rats. Basic Clin Pharmacol Toxicol, 98, 38-43. https://doi.org/10.1111/j.1742-7843.2006.pto_170.x
  7. Bates MN, Smith AH, Hopenhayn-Rich C (1992). Arsenic ingestion and internal cancers, a review. Am J Epidemiol, 135, 462-76. https://doi.org/10.1093/oxfordjournals.aje.a116313
  8. Bera AK, Rana T, Bhattacharya D, Das S, et al (2011). Sodium arsenite-induced alteration in hepatocyte function of rat with special emphasis on superoxide dismutase expression pathway and its prevention by mushroom lectin. Basic Clin Pharmacol Toxicol, 109, 240-4. https://doi.org/10.1111/j.1742-7843.2011.00718.x
  9. Bera AK, Rana T, Das S, et al (2010). L- ascorbate protects arsenic induced oxidative damages and cytotoxicity in rat hepatocytes. Hum Exp Toxicol, 29, 103-111. https://doi.org/10.1177/0960327109357215
  10. Biswas U, Sarkar S, Bhowmik MK, et al (2000). Chronic toxicity of arsenic in goats, clinicobiochemical changes, pathomorphology and tissue residues. Small Rumin Res, 38, 229-235. https://doi.org/10.1016/S0921-4488(00)00162-0
  11. Buck WB, Osweiler GD, Van Gelder GA, (1976). Clinical and Diagnostic Veterinary Toxicology, 2nd Ed. Kendall Hunt, Dubuque.
  12. Chakraborti D, Mukherjee SC, Pati S, et al (2003). Arsenic groundwater ontamination in Middle Ganga Plain, Bihar, India, a future danger? Environ Health Persp, 111, 1194-1201. https://doi.org/10.1289/ehp.5966
  13. Chandra Sekhar K, Chary NS, Kamala CT, et al (2003). Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad, a case study. Environ Int, 29, 601-11. https://doi.org/10.1016/S0160-4120(03)00017-5
  14. Chen H, Li SF, Liu J, et al (2004). Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation, implications for arsenic hepatocarcinogenesis. Carcinogenesis, 25, 1779-1786. https://doi.org/10.1093/carcin/bgh161
  15. Dalloul RA, Lillehoj HS, Lee JS, et al (2006). Immunopotentiating effect of a Fomitella fraxinea-derived lectin on chicken immunity and resistance to coccidiosis. Poult Sci, 85,446-451. https://doi.org/10.1093/ps/85.3.446
  16. Das S, Santra A, Lahiri S, et al (2005). Implications of oxidative stress and hepatic cytokine (TNF-alpha and IL-6). response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol, 204, 18-26. https://doi.org/10.1016/j.taap.2004.08.010
  17. Das AK, Bag S, Sahu R, et al (2010). Protective effect of Corchorus slitorius leaves on sodium arsenite induced toxicity in experimental rats. Food Chem Toxicol, 48, 326-335. https://doi.org/10.1016/j.fct.2009.10.020
  18. Das D, Samanta G, Mondal BK,et al (1996). Arsenic in ground water in six districts of West Bengal, India. Environ Geochem Health, 18, 5-15. https://doi.org/10.1007/BF01757214
  19. Datta S, Saha DR, Ghosh D, et al (2007). Sub-lethal concentration of arsenic interferes with the proliferation of hepatocytes and induces in vivo apoptosis in Clarias batrachus L. Comp Biochem Physiol, Part C, 145, 339-49.
  20. Drane P, Bravard A, Bouvard V, et al (2001). Reciprocal downregulation of p53 and SOD2 gene expression- implication in p53 mediated apoptosis. Oncogene, 209, 430-9.
  21. Duxbury JM, Mayer AB, Lauren JG, et al (2003). Food chain aspects of arsenic contamination in Bangladesh, effects on quality and productivity of rice. Environ Sci Health, 38, 61-9. https://doi.org/10.1081/ESE-120016881
  22. El-Demerdash FM, Yousef MI, Radwan FME, (2009). Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food ChemToxicol, 47, 249-54. https://doi.org/10.1016/j.fct.2008.11.013
  23. Faires MC, (2004). Inorganic arsenic toxicosis in a beef herd. Can Vet J, 45, 329-31.
  24. Feldmann J, John K, Pengprecha P, (2000). Arsenic metabolism in seaweed-eating sheep from Northern Scotland. Fresenius J Anal Chem, 368, 116-21. https://doi.org/10.1007/s002160000482
  25. Ferzand R, Gadahi JL, Shamim S, et al (2008). Histopathological and haematological disturbance caused by arsenic in mice model. Pakistan J Biol Sci, 11, 1405-13. https://doi.org/10.3923/pjbs.2008.1405.1413
  26. Flora SJ, Tandon SK, (1986). Preventive and therapeutic effects of thiamine, ascorbic aid and their combination in lead intoxication. Acta Pharm Toxicol, 58, 374-8.
  27. Flora SJS, Chouhan S, Kannan GM, et al (2008). Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxid Med Cell Longev, 1, 39-45. https://doi.org/10.4161/oxim.1.1.6481
  28. Flora SJS, (1999). Arsenic induced oxidative stress and its reversibility following combined administration of N-acetyl cysteine and meso-2,3 dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physol, 26, 865-9. https://doi.org/10.1046/j.1440-1681.1999.03157.x
  29. Gange CT, Quinn JMW, Zhou H, et al (2004). Characterization of sugar binding by osteoclast inhibitory lectin. J.Biol Chem, 279, 29043-9. https://doi.org/10.1074/jbc.M312518200
  30. Gange CT, Quinn JMW, Zhou H, et al (2004). Characterization of sugar binding by osteoclast inhibitory lectin. J Biol Chem, 279, 29043-9. https://doi.org/10.1074/jbc.M312518200
  31. Garcia-Shavez E, Jimenez I, Segura B, et al (2006). Lipid peroxidative damage and distribution of inorganic and its metabolite in the rat nervous system after arsenite exposure, influence of alpha tocopherol. Neurotoxicol, 27, 1024-31. https://doi.org/10.1016/j.neuro.2006.05.001
  32. Ghosh D, Datta S, Bhattacharya S, et al (2007). Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquatic Toxicol, 81,79-89 https://doi.org/10.1016/j.aquatox.2006.11.004
  33. Guha Mazumder DN (2003). Chronic arsenic toxicity, clinical features, epidemiology, and treatment, experience in West Bengal. J Environ Sci Health Part A, 38, 141-63. https://doi.org/10.1081/ESE-120016886
  34. Guha Mazumder DN, (2008). Chronic arsenic toxicity & human health. Indian J Med Res, 128, 436-47.
  35. Gupta R, Flora SJS, (2005). Protective value of Aloe vera against some toxic effects of arsenic in rats. Phytother Res, 19, 23-28. https://doi.org/10.1002/ptr.1560
  36. Gupta R, Kannan D, Flora SJS, (2007). Concommitant administration of Moringa oleifera seed powder in the remediation of arsenic-induced oxidative stress in mouse. Cell Biol Interact, 31, 44-56. https://doi.org/10.1016/j.cellbi.2006.09.007
  37. Hansen JM, Zhang H, Jones DP, (2006). Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Rad Biol Med, 40, 138-145. https://doi.org/10.1016/j.freeradbiomed.2005.09.023
  38. Ho JCK, Sze SCW, Shen WZ, et al (2004). Mitogenic activity of edible mushroom lectins. Biochimica et Biophysica Acta, 167, 9-17.
  39. Huang C, Ke Q, Costa M, Shi X, (2004). Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem, 255, 57-66. https://doi.org/10.1023/B:MCBI.0000007261.04684.78
  40. Huang SK, Chiu AW, Pu YS, et al (2009). Arsenic methylation capability, myeloperoxidase and sulfotransferase genetic polymorphisms and the stage and grade of urothelial carcinoma. Urol Int, 82, 227-34. https://doi.org/10.1159/000200805
  41. Hughes MF, Kenyon EM, Edwards BC, et al (2003). Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol, 191, 202-10. https://doi.org/10.1016/S0041-008X(03)00249-7
  42. IARC (WHO). (2001). Some drinking water disinfectants and contaminants, including arsenic. monographs on the evaluation of carcinogenic risks to humans (Vol. 84). France Lyon.
  43. Irshad M, Chaudhuri BS, (2002). Oxidant-antioxidant system, role and significance in human body. Indian J Exp Biol, 40, 1233-9.
  44. Izquierdo-Vega JA, Soto CA, Sanchez-Pena LC, et al (2006). Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett, 160, 135-142. https://doi.org/10.1016/j.toxlet.2005.06.018
  45. Jin Y, Sun G, Li X, et al (2004). Study on the toxic effects induced by different arsenicals in primary cultured rat astroglia. Toxicol Appl Pharmacol, 196, 396-403. https://doi.org/10.1016/j.taap.2004.01.015
  46. Jose N, Ajith TA, Janardhanan KK, (2004). Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation (p 43-46). Phytother Res, 18, 1-96. https://doi.org/10.1002/ptr.1358
  47. Jose N, Janardhanan KK, (2000). Antioxidant and antitumour activity of Pleurotus florida. Curr Sci, 79 , 941-943.
  48. Kadirvel R, Sundaram K, Mani S, et al (2007). Supplementation of ascorbic acid and $\alpha$-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Hum Exp Toxicol, 26, 939-46. https://doi.org/10.1177/0960327107087909
  49. Kannan GM, Flora SJS, (2004). Chronic arsenic poisoning in the rat, Treatment with combined administration of succimers and an antioxidant. Ecotoxicol Environ Saf, 58, 37-43. https://doi.org/10.1016/S0147-6513(03)00096-4
  50. Khuda-Bukhsh AR, Pathak S, Guha, B, et al (2005). Can homeopathic arsenic remedy combat arsenic poisoning in humans exposed to groundwater arsenic contamination?, A preliminary report on first human trial. Evidence-based Compl Alt Medicine, 2, 537-48 . https://doi.org/10.1093/ecam/neh124
  51. Kimura N, Fujino E, Urabe S, et al (2007). Effect of supplementation of Agaricus mushroom meal extracts on enzyme activities in peripheral leukocytes of calves. Res Vet Sci, 82, 7-10. https://doi.org/10.1016/j.rvsc.2006.02.003
  52. Kitchin KT, (2001). Recent advances in arsenic carcinogenesis, modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol, 172, 249-61. https://doi.org/10.1006/taap.2001.9157
  53. Kojima C, Qu W, Waalkes MP, et al (2006). Chronic exposure to methylated arsenicals stimulates arsenic excretion pathways and induces arsenic tolerance in rat liver cells. Toxicol Sci, 91, 70-81. https://doi.org/10.1093/toxsci/kfj117
  54. Kokoszka JE, Coskun P, Luke A, et al (2001). Increased mitochondrial oxidative stress in the SOD2 (+/-). mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. IALR J PNAS, 98, 2278-83 . https://doi.org/10.1073/pnas.051627098
  55. Koyama Y, Katsuno Y, Miyoshi N et al (2002). Apoptosis induction by lectin isolated from the mushroom Boletopsis leucomelas in U937 cells. Biotechnol Biochem, 66, 784-9. https://doi.org/10.1271/bbb.66.784
  56. Krippeit- Drews, Kroncke KD, Welker S, et al (1995). The effects of nitric oxide on the membrane potential and ionic currents of mouse pancreatic B cells. Endocrinol, 136, 5363-9. https://doi.org/10.1210/endo.136.12.7588283
  57. Kumagai Y, Jingbo Pi, (2004). Molecular basis for arsenicinduced alteration in nitrite oxide production and oxidative stress, implication of endothelial dysfunction. Toxicol Appl Pharmacol, 198, 450-7. https://doi.org/10.1016/j.taap.2003.10.031
  58. Lakso JU, Peoples SA, (1975). Preliminary studies on lead, cadmium and arsenic contents of feed, cattle and food animal origin coming from different farms in Saxony. J Agri Food Chem, 23, 674-6. https://doi.org/10.1021/jf60200a028
  59. Liu SX, Athar M, Lippai I, et al (2001). Induction of oxyradicals by arsenic, implication for mechanism of genotoxicity. Proceeding National Academy of Science, USA, 98, 1643-8. https://doi.org/10.1073/pnas.98.4.1643
  60. Lopez Alonso M, Benedito JL, Miranda M, et al (2000). Toxic and trace elements in liver, kidney and meat from cattle slaughtered in Galicia (NW Spain). Food Addit Cotam, 17, 447-57. https://doi.org/10.1080/02652030050034028
  61. Lu T, Liu J, LeCluyse EL, et al (2001). Application of cDNAmicroarray to the study of arsenic-induced liver diseases in the population of Guizhou, China. Toxicol Sci, 59, 185-92. https://doi.org/10.1093/toxsci/59.1.185
  62. Majumdar KK, Guha Mazumder DN, Ghose N, et al (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res, 129, 75-82.
  63. Manna P, Sinha M, Pal P, et al (2007). Arjunolic acid, a triterpenoid saponin, ameliorates arsenic-induced cytotoxicity in hepatocytes. Chem Biol Interact, 170, 187-200. https://doi.org/10.1016/j.cbi.2007.08.001
  64. Matsumato AO,Fridovich I,(2001). Subcellular distribution of superoxide desmutase (SOD). in rat liver. J Biol Chem, 276, 38388-93. https://doi.org/10.1074/jbc.M105395200
  65. Miller GG, (2002). In vitro toxicity and interactions of environmental contaminants (Arochlor 1254 and mercury). and immunomodulatory agents (lipopolysaccharide and cortisol). on thymocytes from lake trout (Salvelinus namaycush). Fish shellfish Immunol, 13, 11-26. https://doi.org/10.1006/fsim.2001.0381
  66. Mitranescu E, Ciocarlie N, Gavrila G, et al (2000). Effects of sex on arsenic, cadmium, lead, copper and zinc accumulation in calves. Vet Hum Toxicol, 42, 265-8.
  67. Modi M, Mittal M, Flora SJS, (2007). Combined administration of selenium and meso-2, 3-dimercaptosuccinic acid on arsenic mobilization and tissue oxidative stress in chronic arsenic-exposed male rats. Indian J Pharmacol, 39, 107-14. https://doi.org/10.4103/0253-7613.32530
  68. Morgan SE, Morgan GL, Edwards WC (1984). Pinpointing the sourse of arsenic poisoning in a herd of cattle. Vet Med Small Ani Clin, 79, 1525-8.
  69. Morton WE, Dunnette DA, (1994). Health effects of environmental arsenic. In, Arsenic in the Environment, Part II, Human Health and Ecosystem Effects (Nriagu JO, ed), New York, John Wiley & Sons, 17-34.
  70. Mukherjee S, Das D, Darbar S, et al (2003). Dietary intervention affects arsenic-generated nitric oxide and reactive oxygen intermediate toxicity in islet cells of rats. Curr Sci, 85, 786-93.
  71. Mukherjee S, Roy M, Dey S, et al (2007). A mechanistic approach for modulation of arsenic toxicity in human lymphocytes by curcumin, an active constituent of medicinal herb Curcuma longa Linn. J Clin Biochem Nutr, 41, 32-42. https://doi.org/10.3164/jcbn.2007005
  72. Nag Chowdhury A, Basu S, Chattopadhyay S, Dasgupta S, (1999). Effect of high arsenic content in drinking water on rat brain. Ind J Biochem Biophys, 36, 51-4.
  73. Nandi D, Patra RC, Ranjan R, et al (2008). Role of coadministration of antioxidants in prevention of oxidative injury following sub-chronic exposure to arsenic in rats. Vet Arch, 78.
  74. Nandi D, Patra RC, Swrup D, (2006). Oxidative stress indices and plasma biochemical parameters during oral exposure to arsenic in rats. Food Chem Toxicol, 44, 1579- 1584. https://doi.org/10.1016/j.fct.2006.04.013
  75. Nandi D, Patra RC, Swarup D, (2005). Effects of cysteine, methionine, ascorbic acid and thiaomine on arsenic induced oxidative stress and biochemical alterations in rats. Toxicol, 211, 26-35. https://doi.org/10.1016/j.tox.2005.02.013
  76. National Research Council, (2001). Arsenic drinking water, update, national academy press, washinton, DC.
  77. Nevens F, van Steenbergen W, Sciot R, et al (1990). Arsenic and non-cirrhotic portal hypertension-a report of eight cases. J Hepatol, 11, 80-5. https://doi.org/10.1016/0168-8278(90)90276-W
  78. Noreault TL, Jacobs JM, Nichols RC, et al (2005). Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms. Toxicol Appl Pharmacol, 209, 174-182. https://doi.org/10.1016/j.taap.2005.04.008
  79. NRC (National Research Council), (1999). Arsenic in Drinking Water. Washington, DC, National Academy of Sciences Press.
  80. Oberley TD, Oberley LW, (1997). Antioxidant enzymes and cancer. Histol Histopathol, 12, 525-535.
  81. Pal A, Nayak, B, Das B, et al (2007). Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain. J Environ Monit, 10, 1067-1070.
  82. Paterson RRM, (2008). Fungal enzyme inhibitors as pharmaceuticals,toxins, and scourge of PCR. Curr Enzyme Inhib, 4, 46-59. https://doi.org/10.2174/157340808783502513
  83. Perez-Carrera A, Fernandez-Cirelli A, (2004). Arsenic and fluoride levels in water for dairy (Province of Cordoba, Argentina). Invest Vet, 6, 51-60.
  84. Perez-Carrera A, Fernandez-Cirelli A, (2005). Arsenic concentration in water and bovine milk in Cordoba, Argentina. Preliminary Results. J Dairy Res, 72, 122-124. https://doi.org/10.1017/S0022029904000640
  85. Pie J, Yamauchi H, Kumagai Y, et al (2002). Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Persp, 110, 331. https://doi.org/10.1289/ehp.02110331
  86. Qian Y, Castranova V, Shi X, (2003). New perspectives in arsenic induced cell signal transduction. J Inorg Biochem, 96, 271-8. https://doi.org/10.1016/S0162-0134(03)00235-6
  87. Queirolo F, Stegen S, Mondaca J, et al (2000). Total arsenic, lead and cadmium levels in vegetables cultivated at the Andean village of northen Chile. Sci Total Environ, 255, 75-84. https://doi.org/10.1016/S0048-9697(00)00450-2
  88. Radostits OM, Gay CC, Blood DC, et al (2000). Veterinary Medicine. WB Saunders, London,
  89. Rahman AM, Hasegawa H, Mahfuzur Rahman M, et al (2008). Arsenic accumulation in rice (Oryza sativa L.), human exposure through food chain. Ecotoxicol Environ Saf, 69, 317-24.. https://doi.org/10.1016/j.ecoenv.2007.01.005
  90. Rahman MM, Chowdhary UK, Mukherjee SC, et al (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India. A Review and commentary. Clin Toxicol, 39,683-700.
  91. Ramanathan K, Anusuyadevi M, Shila S, et al (2005). Ascorbic acid and tocopherol as potent modulator of apoptosis on arsenic induced toxicity in rats. Toxicol Lett, 156, 297-306 https://doi.org/10.1016/j.toxlet.2004.12.003
  92. Ramanathan K, Balakumar BS, Panneerselvam C, (2002). Effects of ascorbic acid and alpha tocopherol on arsenic induced oxidative stress. Hum Exp Toxicol, 21, 675-680. https://doi.org/10.1191/0960327102ht307oa
  93. Ramos O, Carrizales L, Yanez L, et al (1995). Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ Health Persp, 103, 85- 88. https://doi.org/10.1289/ehp.95103s485
  94. Rana T, Bera AK, Bhattacharya D, et al (2013). Characterization of arsenic induced cytotoxicity in liver with stress in erythrocytes and its reversibility with Pleurotus florida lectin. Toxicol Ind Health, Jan 2. [Epub ahead of print] Pub Med PMID, 23282998.
  95. Rana T, Bera AK, Bhattacharya D, et al, (2012a). Evidence of antiapoptotic properties of Pleurotus florida lectin against chronic arsenic toxicity in renal cells of rats. J Environ Pathol Toxicol Oncol, 31, 39-48. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v31.i1.50
  96. Rana T, Bera AK, Das S, et al (2011). Mushroom lectin protects arsenic induced apoptosis in hepatocytes of rodents. Hum Exp Toxicol, 30, 307-17. https://doi.org/10.1177/0960327110372642
  97. Rana T, Bera AK, Das S, et al (2012b). Pleurotus florida lectin normalizes duration dependent hepatic oxidative stress responses caused by arsenic in rat. Exp Toxicol Pathol, 64, 665-71 https://doi.org/10.1016/j.etp.2010.12.010
  98. Rana, T, Bera AK, Das S, et al (2010). Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents. Food Chem Toxicol, 48, 1072-7. https://doi.org/10.1016/j.fct.2010.01.027
  99. Rana T, Sarkar S, Mandal T, et al (2008). Contribution of arsenic from agricultural food chain to cow milk in highly arsenic prone zone in Nadia District of West Bengal in India. Int J Vet Med, 4.
  100. Rana T, Sarkar S, Mandal TK, et al (2009). Study on the effect of toxicity under highly arsenic prone zone in Nadia district of West Bengal in India. nature procedings, hdl, 10101/npre..2992.1
  101. Rosas I, Belmont R, Armienta A, et al (1999). Arsenic concentration in water and soil, milk and forage in Comarca Lagunera, Mexico. Water Air Soil Polutio, 112, 133. https://doi.org/10.1023/A:1005095900193
  102. Rosiles MR, (1977). Levels of arsenic detected in cattle at various intervals after accidential poisoning. Veterinaria Mexico, 8, 119-22.
  103. Roychowdhury T, Uchino T, Tokunaga H, et al, (2002). Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chem. Toxicol, 40, 1611-21. https://doi.org/10.1016/S0278-6915(02)00104-7
  104. Santra A, Maiti A, Chowdhury A, et al (2000). Oxidative stress in liver of mice exposed to arsenic contaminated water. Indian J Gastroenterol, 19, 112-5.
  105. Santra A, Chowdhurya A, Ghataka S, et al (2007). Arsenic induced apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine. Toxicol Appl Pharmacol, 220, 146-55. https://doi.org/10.1016/j.taap.2006.12.029
  106. Schindler TH, Magosaki N, Jeserich, M, et al, (2000). Effect of Ascorbic acid on endothelial dysfunction of epicardial coronary arteries in chronic smokers assessed by cold pressor testing. Cardiol, 94, 239-46. https://doi.org/10.1159/000047324
  107. Selby LA, Dorn CR, (1989). Public health hazards associated with arsenic poisoning in cattle. J Am Vet Med Assoc, 165, 1010.
  108. Sengupta M, Bishayi B, (2002). Effect of lead and arsenic on murine macrophage response. Drug Chem Toxicol, 25, 459-72. https://doi.org/10.1081/DCT-120014796
  109. Shi H, Shi X, Liu KJ, (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem, 255, 67-78. https://doi.org/10.1023/B:MCBI.0000007262.26044.e8
  110. Smith AH, lingas EO, Rahman M, (2000). Contamination of drinking water of arsenic in Bangladesh, A Public health emergency. Bull World Health Org, 78, 1093-103.
  111. Sohini, Rana SV, (2007). Protective effect of ascorbic acid against oxidative stress induced by inorganic arsenic in liver and kidney of rat. Indian J Exp Biol, 45, 371-5.
  112. Wang HX, Ng TB, Liu Q, (2002). Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea. Life Sci, 70, 877-86. https://doi.org/10.1016/S0024-3205(01)01463-1
  113. Wang HX, Ng TB, Liu WK, et al (1996). Polysaccharide-peptide complexes from two distinct lectins with antiproliferative activity from the mycelium of an edible mushroom, Tricholoma mongolicum. Int J Pept Protein Res, 46, 508-13.
  114. Wang HX, Liu WK, Ng TB, et al (1995). Immunomodulatory and antitumor activities of a polysaccharide-peptide complex from a mycelial culture of Tricholoma sp., a local edible mushroom. Life Sci, 57, 269-81. https://doi.org/10.1016/0024-3205(95)00270-G
  115. Wang RJ, Li DF, Bourne S, (1998). Can 2000...years of herbal medicine history help us solve problems on the year 2000? Pages 273-291 in Biotechnology in the feed industry. Proceedings of Alltech's 14th Annual Symposium. University Press, Nottingham, UK
  116. Wang TS, Kuo CF, Jan KY, et al, (1996). Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol, 169, 256-68 https://doi.org/10.1002/(SICI)1097-4652(199611)169:2<256::AID-JCP5>3.0.CO;2-N
  117. Wasser SP, Weis AL, (1999). Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms, a modern perspective. Crit Rev Immunol, 19, 65-96
  118. WHO, (2003). environmental health criteria-224. arsenic and arsenic compounds, second ed. World Health Organization, Geneva.
  119. WHO (1993). Guideline for drinking water quality, Recommendation .Vol. 1, 2nd ed. World Health Organisation, Geneva.
  120. Wu MM, Chiou HY, Wang TW, et al (2001). Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect, 109, 1011-7. https://doi.org/10.1289/ehp.011091011
  121. Xie Y, Liu J, Tallaa LB, et al (2007). Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicol, 236, 7-15. https://doi.org/10.1016/j.tox.2007.03.021
  122. Yamanaka K, Takabayashi F, Mizoi M, et al (2001). Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-Oxo-2'-deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis. Biochem Biophys Res Commun, 287, 66-70. https://doi.org/10.1006/bbrc.2001.5551
  123. Yamanaka K, Hasegawa A, Sawamura R, et al (1991). Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol, 108, 205-13. https://doi.org/10.1016/0041-008X(91)90111-Q
  124. Yamanaka K, Hoshino M, Okamota M, et al (1990). Induction of DNA damage by dimelhyarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun, 168, 58-64. https://doi.org/10.1016/0006-291X(90)91674-H
  125. Yoshida T, Yamauchi H, Fan SG, (2004). Chronic health effects in people exposed to arsenic via the drinking water, doseresponse relationships in review. Toxicol Appl Pharmacol, 198, 243-52. https://doi.org/10.1016/j.taap.2003.10.022
  126. Young KJ, Beyeon SE, Lee YG, et al (2008). Immunostimulatory activities of polysaccharides from liquid culture of pinemushroom Tricholoma matsutake. J Microbiol Biotechnol, 18, 95-103.
  127. Yu BP (1994). Cellular defenses against damage from reactive oxygen species. Physiol Rev, 74, 139-162. https://doi.org/10.1152/physrev.1994.74.1.139
  128. Zhao WR, Yang B, Zhu XM, et al (2001). The stability of constructed wetland in treating heavy metal wastewater released from a Pb/Zn mine at Fankou of Guangdong Province. Eco Sci, 20, 16-20.
  129. Zheng S, Li C, Ngand TB, et al (2007). A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem, 42, 1620-4. https://doi.org/10.1016/j.procbio.2007.09.004