Acknowledgement
Supported by : Natural Science Foundation of Guangxi Province
References
- Berteaux N, Lottin S, Monte D, et al (2005). H19mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem, 280, 29625-36. https://doi.org/10.1074/jbc.M504033200
- Blomberg I,Hoffmann I(1999). Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclinE-and cyclin A-dependent kinases. Mol Cell Biol, 19, 6183-94. https://doi.org/10.1128/MCB.19.9.6183
- Busino L, Chiesa M, Draetta GF,et al (2004). Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis.Oncogene, 23, 2050-6. https://doi.org/10.1038/sj.onc.1207394
- Chen H, Lin YW, Mao YQ, et al (2012). microRNA-449a acts as a tumor suppressor in human bladder cancer through the regulation of pocket proteins. Cancer Lett, 320, 40-47. https://doi.org/10.1016/j.canlet.2012.01.027
- de Oliveira PE, Zhang L, Wang Z, et al (2009). Hypoxiamediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle, 8, 3157-64. https://doi.org/10.4161/cc.8.19.9704
- El-Serag HB,Rudolph KL(2007). Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterol, 132, 2557-76. https://doi.org/10.1053/j.gastro.2007.04.061
- Gao N,Flynn DC,Zhang Z,et al (2004). G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/ mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol, 287, 281-91.
- Garzon R, Fabbri M, Cimmino A,et al (2006). MicroRNA expression and function in cancer. Trends Mol Med, 12, 580-7. https://doi.org/10.1016/j.molmed.2006.10.006
- Harbour JW, Luo RX, Dei Santi A, et al (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 98, 859-69. https://doi.org/10.1016/S0092-8674(00)81519-6
- Hernandez JM,Elahi A, Clark CW, et al (2013). miR-675 mediates downregulation of twist1 and Rb in AFP-secreting hepatocellular carcinoma. Ann Surg Oncol, 3, 625-35.
- Hoffmann I, Draetta G, Karsenti E (1994). Activation of the phosphatase activity of human Cdc25A by aCdk2-cyclinE dependent phosphorylation at the G1/S transition. EMBO J, 13, 4302-10.
- Huang N, Lin J, Ruan J, et al (2012). MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett, 586, 884-91. https://doi.org/10.1016/j.febslet.2012.02.017
-
Jiang X, Xiang G, Wang Y, et al (2012). MicroRNA-590-5p regulates proliferation and invasion in human hepatocellular carcinoma cells by targeting TGF-
${\beta}$ RII. Mol Cells, 33, 545-551. https://doi.org/10.1007/s10059-012-2267-4 - Jovanovic M, Hengartner MO (2006). miRNAs and apoptosis: RNAs to die for. Oncogene, 25, 6176-87. https://doi.org/10.1038/sj.onc.1209912
- Kang T, Wei Y, Honaker Y, et al (2008). GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell, 13, 36-47. https://doi.org/10.1016/j.ccr.2007.12.002
- Kristjansdottir K, Rudolph J (2004). Cdc25 phosphatases and cancer. Chem Biol, 11, 1043-51. https://doi.org/10.1016/j.chembiol.2004.07.007
- Li HY, Zhang Y,Cai JH,et al (2013). MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of Pi3k/Akt Pathway. Asian Pac J Cancer Prev, 14, 3631-4. https://doi.org/10.7314/APJCP.2013.14.6.3631
- Li J, Ran C, Li E, et al (2008). Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell, 14, 62-75. https://doi.org/10.1016/j.devcel.2007.10.017
- Lin J, Huang S, Wu S,et al (2011). MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis, 32, 1641-7. https://doi.org/10.1093/carcin/bgr199
- Lin YM, Chung CL, Cheng YS (2009). Posttranscriptional regulation of CDC25A by BOLL is a conserved fertility mechanism essential for human spermatogenesis. J Clin Endocrinol Metab, 94, 2650-7. https://doi.org/10.1210/jc.2009-0108
- Molinari M, Mercurio C, Dominguez J, et al (2000). Human Cdc25A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep, 1, 71-79. https://doi.org/10.1093/embo-reports/kvd018
- Roy P, Dasgupta UB (2013). The microRNA has-miR-503 inhibits growth of K562 cell line. Blood Cells Mol Dis, 50, 271-2. https://doi.org/10.1016/j.bcmd.2013.01.005
- Tripathi V,Shen Z, Chakraborty A,et al (2013). Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 9, 1003368. https://doi.org/10.1371/journal.pgen.1003368
- Tsang WP, Ng EK, Ng SS, et al (2010). Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 31, 350-8. https://doi.org/10.1093/carcin/bgp181
- Vigo E, Muller H, Prosperini E, et al (1999). CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol, 19, 6379-95. https://doi.org/10.1128/MCB.19.9.6379
- Wang L, Li B, Li L, et al (2013). MicroRNA-497 Suppresses Proliferation and Induces Apoptosis in Prostate Cancer Cells. Asian Pac J Cancer Prev, 14, 3499-502. https://doi.org/10.7314/APJCP.2013.14.6.3499
- Wang P,Zou F,Zhang X,et al (2009). microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res, 69, 8157-65. https://doi.org/10.1158/0008-5472.CAN-09-1996
- Xu G, Zhang Y, Wei J, et al (2013). MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen-activated protein kinase-kinase3.BMC Cancer, 13, 469. https://doi.org/10.1186/1471-2407-13-469
- Yang X, Feng M, Jiang X, et al (2009). miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev, 23, 2388-93. https://doi.org/10.1101/gad.1819009
- Zhang B, Pan X, Cobb GP, et al (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol, 302, 1-12. https://doi.org/10.1016/j.ydbio.2006.08.028