DOI QR코드

DOI QR Code

Gastric Carcinoma: Recent Trends in Diagnostic Biomarkers and Molecular Targeted Therapies

  • Majeed, Wafa (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Iftikhar, Asra (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Khaliq, Tanweer (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Aslam, Bilal (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Muzaffar, Humaira (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Atta, Komal (Department of Physiology, University Medical and Dental College, The University of Faisalabad) ;
  • Mahmood, Aisha (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Waris, Shahid (Government College University)
  • Published : 2016.07.01

Abstract

Gastric cancer is generally associated with poor survival rates and accounts for a remarkable proportion of global cancer mortality. The prevalence of gastric carcinoma varies in different regions of world and across teh various ethnic groups. On the basis of pathological assessment, gastric cancer can be categorized as intestinal and diffuse carcinomas. The etiology is diverse, including chemical carcinogen exposure, and high salt intake Helicobacter pylori also plays a vital role in the pathogenesis of certain gastric carcinomas. The development of gastric cancer involves various alterations in mRNAs, genes (GOLPH3, MTA2) and proteins (Coronins). miRNAs, Hsa-mir-135b, MiR-21, miR-106b, miR-17, miR-18a, MiR-21, miR-106b, miR-17, miR-18a and MiRNA-375, miRNA-195-5p are the latest diagnostic biomarkers which can facilitate the early diagnosis of gastric carcinomas. Recent development in the treatment strategies for gastric carcinoma include the introduction of monoclonal antibodies, TKI inhibitors, inhibitors of PDGFR ${\beta}$, VEGFR-1, VEGFR-2, Anti-EGFR and anti-HER2 agents which can be applied along with conventional therapies.

Keywords

References

  1. Alanazi, IO, and Khan Z (2016). Understanding EGFR signaling in breast cancer and breast cancer stem cells: overexpression and therapeutic implications. Asian Pac J Cancer Prev, 17, 445-53. https://doi.org/10.7314/APJCP.2016.17.2.445
  2. Appleman LJ (2011). MET signaling pathway: a rational target for cancer therapy. J Clin Oncol, 29, 4837-8. https://doi.org/10.1200/JCO.2011.37.7929
  3. Brade AM, Magalhaes J, Siu L, et al (2007). A single agent, phase I pharmacodynamic study of nimotuzumab (TheraCIMh-R3) in patients with advanced refractory solid tumors. ASCO annual meeting proceedings Part I. J Clin Oncol, 25, 14030.
  4. Carcas LP (2014). Gastric cancer review. J Carcinog, 13, 14. https://doi.org/10.4103/1477-3163.146506
  5. Chow LQ, Eckhardt SG (2007). Sunitinib: from rational design to clinical efficacy. J Clin Oncol, 25, 884-96. https://doi.org/10.1200/JCO.2006.06.3602
  6. Ciardiello F, Tortora G (2008). EGFR antagonists in cancer treatment. N Engl J Med, 358, 1160-74. https://doi.org/10.1056/NEJMra0707704
  7. Cidon EU, Ellis SG, Inam Y, et al (2013). Molecular targeted agents for gastric cancer: a step forward towards personalized therapy. Cancers (Basel), 5, 64-91. https://doi.org/10.3390/cancers5010064
  8. Compare D, Rocco A, Nardone G (2010). Risk factors in gastric cancer. Eur Rev Med Pharmacol Sci, 14, 302-8.
  9. Darnet S, Moreira FC, Hamoy IG, et al (2015). High-Throughput Sequencing of miRNAs Reveals a Tissue Signature in Gastric Cancer and Suggests Novel Potential Biomarkers. Bioinform Biolo Insights, 9, 1-8.
  10. Deng N, Goh LK, Wang H, et al (2012). A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut, 61, 673-84. https://doi.org/10.1136/gutjnl-2011-301839
  11. Dippold HC, Ng MM, Farber-Katz SE, et al (2009). GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell, 139, 337-51. https://doi.org/10.1016/j.cell.2009.07.052
  12. Dong L, Qi P, Xu MD, et al (2015). Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Int J Cancer, 137, 1128-35. https://doi.org/10.1002/ijc.29484
  13. Fu J, Qin L, He T, et al (2011). The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res, 21, 275-89. https://doi.org/10.1038/cr.2010.118
  14. Gao CF, Xie Q, Zhang YW, et al (2009). Therapeutic potential of hepatocyte growth factor/scatter factor neutralizing antibodies: inhibition of tumor growth in both autocrine and paracrine hepatocyte growth factor/scatter factor: c-Metdriven models of leiomyosarcoma. Mol Cancer Ther, 8, 2803-10. https://doi.org/10.1158/1535-7163.MCT-09-0125
  15. Gorur A, Fidanci SB, Unal ND, et al (2013). Determination of plasma microRNA for early detection of gastric cancer. Mol Biol Reports, 40, 2091-6. https://doi.org/10.1007/s11033-012-2267-7
  16. Gomes LL, Moreira FC, Hamoy IG, et al (2014). Identification of miRNAs expression profile in gastric cancer using selforganizing maps (SOM). Bioinformation, 10, 246-50. https://doi.org/10.6026/97320630010246
  17. Gozgit JM, Wong MJ, Moran L, et al (2012). Ponatinib (AP24534), a multitargeted pan- FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther, 11, 690-9. https://doi.org/10.1158/1535-7163.MCT-11-0450
  18. Grabsch H, Sivakumar S, Gray S, Gabbert HE, Muller W (2010). HER2 expression in gastric cancer: Rare, heterogeneous and of no prognostic value - conclusions from 924 cases of two independent series. Cell Oncol, 32, 57-65.
  19. Itoh N, Ornitz DM (2011). Fibroblast growth factors: from molecularevolution to roles in development, metabolism and disease. J Biochem, 149, 121-30. https://doi.org/10.1093/jb/mvq121
  20. Janjigian YY, Werner D, Pauligk C, et al (2012). Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann oncol. 23, 2656-62. https://doi.org/10.1093/annonc/mds104
  21. Jian-Hui C, Er-Tao Z, Si-Le C, et al (2016). CD44, Sonic Hedgehog, and Gli1 expression are prognostic biomarkers in gastric cancer patients after radical resection. Gastroenterolo Res Pract, 2016, 1-8.
  22. Kaur M, Kaur T, Kamboj SS, Singh J (2016). Roles of Galectin-7 in Cancer. Asian Pac J Cancer Prev, 17, 455-61. https://doi.org/10.7314/APJCP.2016.17.2.455
  23. Kim BH, Hong SW, Kim A, Choi SH, Yoon SO (2013). Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncolo, 107, 505-10. https://doi.org/10.1002/jso.23271
  24. Krupitskaya Y, Wakelee HA (2009). Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR- 2 for the potential treatment of cancer. Curr Opin Investig Drugs, 10, 597-05.
  25. Lastraioli E, Raffaella Romoli M, Arcangeli A (2012). Immunohistochemical biomarkers in gastric cancer research and management. Int J Surg Oncol, 1, 1-9.
  26. Li C, Li JF, Cai Q, et al (2013). MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncolo, 108, 89-2. https://doi.org/10.1002/jso.23358
  27. Lindsay CR, MacPherson IR, Cassidy J (2009). Current status of cediranib: the rapid development of a novel anti-angiogenic therapy. Future Oncol, 5, 421-32. https://doi.org/10.2217/fon.09.18
  28. Luo GQ, Li JH, Wen JF, et al (2008). Effect and mechanism of the Twist gene on invasion and metastasis of gastric carcinoma cells. World J Gastroenterol, 14, 2487-93. https://doi.org/10.3748/wjg.14.2487
  29. Ma Y, Ren Y, Zhang X, et al (2014). High GOLPH3 expression is associated with a more aggressive behavior of epithelial ovarian carcinoma. Virchows Arch, 464, 443-52. https://doi.org/10.1007/s00428-014-1536-3
  30. Majeed W, Aslam B, Javed I, et al (2014). Breast cancer: major risk factors and recent developments in treatment. Asian Pac J Cancer Prev, 15, 3353-8. https://doi.org/10.7314/APJCP.2014.15.8.3353
  31. Markman B, Atzori F, Perez-Garcia J, Tabernero J, Baselga J (2010). Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol, 21, 683-1. https://doi.org/10.1093/annonc/mdp347
  32. Matsumoto K, Arao T, Hamaguchi T, et al (2012). FGFR2 gene amplification and clinicopathological features in gastric cancer. Br J Cancer, 106, 727-2. https://doi.org/10.1038/bjc.2011.603
  33. Murayama Y, Oritani K, Tsutsui S (2015). Novel CD9-targeted therapies in gastric cancer. World J Gastroenterol, 21, 3206-13. https://doi.org/10.3748/wjg.v21.i11.3206
  34. Nagini S (2012). Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol, 4, 156-69. https://doi.org/10.4251/wjgo.v4.i7.156
  35. Okamoto W, Okamoto I, Arao T, et al (2012). Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther, 11, 1557-4. https://doi.org/10.1158/1535-7163.MCT-11-0934
  36. Peng J, Fang Y, Tao Y, et al (2014). Mechanisms of GOLPH3 associated with the progression of gastric cancer: a preliminary study. PloS one, 9, 107362 https://doi.org/10.1371/journal.pone.0107362
  37. Lewis GDL, Li G, Dugger DL, et al (2008). Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 68, 9280-90. https://doi.org/10.1158/0008-5472.CAN-08-1776
  38. Pimentel-Nunes P, Afonso L, Lopes P, et al (2011). Increased expression of toll-like receptors (TLR) 2, 4 and 5 in gastric dysplasia. Pathol Oncol Res, 17, 677-3. https://doi.org/10.1007/s12253-011-9368-9
  39. Rebekka S, Daniel R, Alexander R (2015). Adjuvant and/or neoadjuvant therapy for gastric cancer? A perspective review. Ther Adv Med Oncol, 7, 39-8. https://doi.org/10.1177/1758834014558839
  40. Ren G, Tian Q, An Y, et al (2016). Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K. Mol Cancer, 11, 1.
  41. Resende C, Thiel A, Machado JC, Ristimaki A (2011). Gastric cancer: basic aspects. Helicobacter, 16, 38-4. https://doi.org/10.1111/j.1523-5378.2011.00879.x
  42. Ribeiro-dos-Santos A, Khayat AS, Silva A, et al (2010). Ultradeep sequencing reveals the microRNA expression pattern of the human stomach. PLoS One, 5, 1320-5.
  43. Satoh T, Yamada Y, Muro K, et al (2012). Phase I study of cediranib in combination with cisplatin plus fluoropyrimidine (S-1 or capecitabine) in Japanese patients with previously untreated advanced gastric cancer. Cancer Chemother Pharmacol, 69, 439-46. https://doi.org/10.1007/s00280-011-1723-8
  44. Scott KL, Kabbarah O, Liang MC, et al (2009). GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature, 459, 1085-90. https://doi.org/10.1038/nature08109
  45. Shiotani A, Murao T, Kimura Y, et al (2013). Identification of serum miRNAs as novel non-invasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer, 109, 2323-30. https://doi.org/10.1038/bjc.2013.596
  46. Shitara K, Doi T, Ohtsu A (2012). Molecular targeting therapy and biomarker for advanced gastric cancer. J Phys Chem Biophys, 2, 1-6.
  47. Siegel RL, Miller KD, Jemal A (2015). Cancer statistics. CA Cancer J Clin, 6, 5-29.
  48. Sierra JR, Tsao MS (2011). c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol, 3, 21-35. https://doi.org/10.1177/1758834011422557
  49. Slomovitz BM, Coleman RL (2012). The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res, 18, 5856-64. https://doi.org/10.1158/1078-0432.CCR-12-0662
  50. Song MY, Pan KF, Su HJ, et al (2012). Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PloS one, 7, 33608. https://doi.org/10.1371/journal.pone.0033608
  51. Spratlin JL, Cohen RB, Eadens M, et al (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol, 28, 780-7. https://doi.org/10.1200/JCO.2009.23.7537
  52. Takahashi T, Saikawa Y, Kitagawa Y (2013). Gastric cancer: current status of diagnosis and treatment. Cancers, 5, 48-63. https://doi.org/10.3390/cancers5010048
  53. Thal DR, Xavier CP, Rosentreter A, et al (2008). Expression of coronin-3 (coronin-1C) in diffuse gliomas is related to malignancy. J Pathol, 214, 415-24.
  54. Tian S, Quan H, Xie C, et al (2011). YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci, 102, 1374-80. https://doi.org/10.1111/j.1349-7006.2011.01939.x
  55. Tiong KH, Mah LY, Leong CO (2013). Functional roles of fibroblast tgrowth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 18, 1447-68. https://doi.org/10.1007/s10495-013-0886-7
  56. Trueb B (2011) . Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cell Mol Life Sci, 68, 951-64. https://doi.org/10.1007/s00018-010-0576-3
  57. Turner N, Grose R (2010). Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 10, 116-29. https://doi.org/10.1038/nrc2780
  58. Vaisanen MR, Vaisanen T, Jukkola-Vuorinen A, et al (2010). Expression of toll-like receptor-9 is increased in poorly differentiated prostate tumors. Prostate, 70, 817-24. https://doi.org/10.1002/pros.21115
  59. Vita F, Giuliani F, Silvestris N, et al (2010). Human epidermal growth factor receptor 2 (HER2) in gastric cancer: a new therapeutic target. Cancer Treat Rev, 3, 11-5.
  60. Vita F, Giuliani F, Silvestris N, et al (2012). Current status of targeted therapies in advanced gastric cancer. Expert Opin Ther Targets, 16, S29-4. https://doi.org/10.1517/14728222.2011.652616
  61. Vita F, Orditura M, Martinelli E, et al (2011). A multicenter phase II study of induction chemotherapy with FOLFOX-4 and cetuximab followed by radiation and cetuximab in locally advanced oesophageal cancer. Br J Cancer, 104, 427-32. https://doi.org/10.1038/sj.bjc.6606093
  62. Vita F, Di Martino N, Fabozzi A, et al (2014). Clinical management of advanced gastric cancer: The role of new molecular drugs. World J Gastroenterolo, 20, 14537-58. https://doi.org/10.3748/wjg.v20.i40.14537
  63. Vogelaar IP, van der Post RS, Bisseling TM, et al (2012). Familial gastric cancer: detection of a hereditary cause helps to understand its etiology. Hered Cancer Clin Pract, 10, 18. https://doi.org/10.1186/1897-4287-10-18
  64. Wang JH, Chen XT, Wen ZS, et al (2012). High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis. PloS One, 7, 45622. https://doi.org/10.1371/journal.pone.0045622
  65. Wang JL, Hu Y, Kong X, et al (2013). Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PloS One, 8, 73683. https://doi.org/10.1371/journal.pone.0073683
  66. Wilhelm SM, Adnane L, Newell P, et al (2008). Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther, 7, 3129-40. https://doi.org/10.1158/1535-7163.MCT-08-0013
  67. Xiao F, Zuo Z, Cai G, et al (2009). miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res, 37, 105-10.
  68. Yamashita Y, Iijima S, Yorozu K, et al (2011). Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res, 17, 5060-70. https://doi.org/10.1158/1078-0432.CCR-10-2927
  69. Yang H, Wang B, Yan J, et al (2014). Toll-like receptor 2 promotes invasion by SGC-7901 human gastric carcinoma cells and is associated with gastric carcinoma metastasis. Ann Clin Lab Sci, 44, 158-66.
  70. Ychou M, Boige V, Pignon JP, et al (2011). Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol, 29, 1715-21. https://doi.org/10.1200/JCO.2010.33.0597
  71. Zhou J, Xu T, Qin R, et al (2012). Overexpression of Golgi phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated with worse prognosis. J Neurooncol, 110, 195-3. https://doi.org/10.1007/s11060-012-0970-9