DOI QR코드

DOI QR Code

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya (Department of Rural and Biosystems Engineering, Chonnam National University) ;
  • Reza, Md Nasim (Department of Rural and Biosystems Engineering, Chonnam National University) ;
  • Jeong, Jin-Tae (Department of Rural and Biosystems Engineering, Chonnam National University) ;
  • Lee, Kyeong-Hwan (Department of Rural and Biosystems Engineering, Chonnam National University)
  • Received : 2016.03.24
  • Accepted : 2016.03.28
  • Published : 2016.06.01

Abstract

Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

Keywords

References

  1. Aydin, I., F. Aydin, A. Saydut, E. G. Bakirdere and C. Hamamci. 2010. Hazardous metal geochemistry of sedimentary phosphate rock used for fertilizer (Mazidag, SE Anatolia, Turkey). Microchemical Journal 96:247-251. https://doi.org/10.1016/j.microc.2010.03.006
  2. Bai, Y., J. Tong, C. Bian and S. Xia. 2013. An electrochemical microsensor based on molybdophosphate complex for fast determination of total phosphorus in water. In: Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 7-10, Suzhou, China.
  3. Bai, Y., J. Tong, J. Wang, C. Bian and S. Xia. 2014. Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water. IET Nanobiotechnology 8(1):31-36. https://doi.org/10.1049/iet-nbt.2013.0041
  4. Berchmans, S., T. B. Issa and P. Singh. 2012. Determination of inorganic phosphate by electroanalytical methods: a review. Analytica Chimica Acta 729:7- 20. https://doi.org/10.1016/j.aca.2012.03.060
  5. Bricker, S. B., C. G. Clement, D. E. Pirhalle, S. P. Orlando and D. R. G. Farrow. 1999. National Estuarine Eutrophication Assessment. Effects of nutrient enrichment in the Nation's estuaries. NOAA.
  6. Chang, N.-B., Z. Xuan and Y. J. Yang. 2013. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sensing of Environment 134:100-110. https://doi.org/10.1016/j.rse.2013.03.002
  7. Chen, J. and W. Quan. 2012. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(1):273-280. https://doi.org/10.1109/JSTARS.2011.2174339
  8. Cleary, J., C. Slater, C. McGraw and D. Diamond. 2008. An autonomous microfluidic sensor for phosphate: on-site analysis of treated wastewater. IEEE Sensors Journal 8 (5):508-515. https://doi.org/10.1109/JSEN.2008.918259
  9. Ejhieh, A. N. and N. Masoudipour. 2010. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbonpaste electrode (SMZ-CPE). Analytica Chimica Acta 658(1):68-74. https://doi.org/10.1016/j.aca.2009.10.064
  10. Ganesh, S., F. Khan, M. K. Ahmed, P. Velavendan, N. K. Pandey and U. K. Mudali. 2012. Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Science and Technology 66(12):2653-2658. https://doi.org/10.2166/wst.2012.468
  11. Ganjali, M. R., M. Hosseini, F. Aboufazeli, F. Faridbod, H. Goldooz and A. R. Badiei. 2012. A highly selective fluorescent probe for pyrophosphate detection in aqueous solutions. The Journal of Biological and Chemical Luminescence 27(1):20-23. https://doi.org/10.1002/bio.1316
  12. Gao, Y., J. Gao, H. Yin, C. Liu, T. Xia, J. Wang and Q. Huang. 2015. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management 151:33-43. https://doi.org/10.1016/j.jenvman.2014.11.036
  13. He, G., L. Zhao, K. Chen, Y. Liu and H. Zhu. 2013. Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO43- in aqueous solution. Talanta 106:73-78. https://doi.org/10.1016/j.talanta.2012.11.064
  14. Hosseini, M., M. R. Ganjali, M. Tavakoli, P. Norouzi, F. Faridbod, H. Goldooz and A. Badiei. 2011. Pyrophosphate selective recognition in aqueous solution based on fluorescence enhancement of a new aluminium complex. Journal of Fluorescence 21(4):1509-1513. https://doi.org/10.1007/s10895-011-0837-z
  15. Jayawardane, B. M., I. D. McKelvie and S. D. Kolev. 2012. A paper-based device for measurement of reactive phosphate in water. Talanta 100:454-460. https://doi.org/10.1016/j.talanta.2012.08.021
  16. Jonca, J., V. L. Fernandez, D. Thouron, A. Paulmier, M. Graco and V. Garcon. 2011. Phosphate determination in seawater: Toward an autonomous electrochemical method. Talanta 87:161- 167. https://doi.org/10.1016/j.talanta.2011.09.056
  17. Kjaer, H. A., P. Vallelonga, A. Svensson, M. E. L. Kristensen, C. Tibuleac and M. Bigler. 2013. Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores. Environmental Science and Technology 47:12325-12332. https://doi.org/10.1021/es402274z
  18. Kolliopoulos, A. V., D. K. Kampouris and C. E. Banks. 2015. Rapid and portable electrochemical quantification of phosphorus. Analytical Chemistry 87(8):4269-4274. https://doi.org/10.1021/ac504602a
  19. Korostynska, O., A. Mason and A. Al-Shamma'a. 2012. Monitoring of nitrates and phosphates in wastewater: current technologies and further challenges. International Journal on Smart Sensing and Intelligent Systems 5(1):149-176. https://doi.org/10.21307/ijssis-2017-475
  20. Krockel, L., H. Lehmann, T. Wieduwilt and M. A. Schmidt. 2014. Fluorescence detection for phosphate monitoring using reverse injection analysis. Talanta 125:107-113. https://doi.org/10.1016/j.talanta.2014.02.072
  21. Law al, A. T. and S. B. Adeloju. 2012. Polypyrrole Based amperometric and potentiometric phosphate biosensors:a comparative study. Journal of Applied Science 12(4):315-325. https://doi.org/10.3923/jas.2012.315.325
  22. Law al, A. T. and S. B. Adeloju. 2013. Progress and recent advances in phosphate sensors: a review. Talanta 114:191-203. https://doi.org/10.1016/j.talanta.2013.03.031
  23. Legiret, F. -E., V. J. Sieben, E. M. S. Woodward, S. K. A. K. Bey, M. C. Mowlem, D. P. Connelly and E. P. Achterberg. 2013. A high performance microfluidic analyser for phosphate measurements in marine water using the vanadomolybdate method. Talanta 116:382-387. https://doi.org/10.1016/j.talanta.2013.05.004
  24. Liu, W., Z. Du, Y. Qian and F. Li. 2013. A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles. Sensors and Actuators B 176:927- 931. https://doi.org/10.1016/j.snb.2012.10.074
  25. Modi, N. R., B. Patel, M. B. Patel and S. K. Menon. 2011. Novel monohydrogenphosphate ion-selective polymeric membrane sensor based on phenyl urea substituted calix[4]arene. Talanta 86:121-127. https://doi.org/10.1016/j.talanta.2011.08.042
  26. Moonrungsee, N., S. Pencharee and J. Jakmunee. 2015. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 36:204-209.
  27. Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 31-36.
  28. Norouzi, P., M. R. Ganjali, F. Faridbad, S. J. Shahtaher and H. A. Zamani. 2012. Electrochemical anion sensor for monohydrogen phosphate based on nano-composite carbon paste. International Journal of Electrochemical Science 7:2633-2642.
  29. Ren, K., J. Zhou and H. Wu. 2012. Materials for microfluidic chip fabrication. American Chemical Society 46(11):2396-2406.
  30. Tafesse, F. and M. Enemchukwu. 2011. Fabrication of new solid state phosphate selective electrodes for environmental monitoring. Talanta 83(5):1491-1495. https://doi.org/10.1016/j.talanta.2010.11.045
  31. Tong, J., C. Bian, Y. Li, Y. Bai and S. Xia. 2010. Design of a MEMS-based total phosphorus sensor with a microdigestion system. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), pp. 1-4, Chengdu, China.
  32. Wang, F., J. Tong, Y. Li, C. Bian, J. Sun and S. Xia. 2014. An electrochemical microsensor based on a AuNPs-modified microband array electrode for phosphate determination in fresh water samples. Sensors 14(12):24472-24482. https://doi.org/10.3390/s141224472
  33. Wang, J. J. and P. L. Bishop. 2010. Fabrication, calibration and evaluation of a phosphate ion-selective microelectrode. Environmental Pollution 158:3612-3617. https://doi.org/10.1016/j.envpol.2010.08.007
  34. Xie, C., J. Xu, J. Tang, S. A. Baig and X. Xu. 2013. Comparison of phosphorus determination methods by ion chromatography and molybdenum blue methods. Communications in Soil Science and Plant Analysis 44(17):2535-2545. https://doi.org/10.1080/00103624.2013.811518
  35. Zhang, G., B. Lu, Y. Wen, L. Lu and J. Xu. 2012. Facile fabrication of a cost-effective, water-soluble, and electrosynthesized poly (9-aminofluorene) fluorescent sensor for the selective and sensitive detection of Fe (III) and inorganic phosphates. Sensors and Actuators B 171-172:786-794. https://doi.org/10.1016/j.snb.2012.05.072
  36. Zhao, H. X., L. Q. Liu, Z. D. Liu, Y. Wang, X. J. Zhao and C. Z. Huang. 2011. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chemical Communications 47(9):2604-2606. https://doi.org/10.1039/c0cc04399k

Cited by

  1. Rapid detection of nutrients with electronic sensors: a review vol.5, pp.4, 2018, https://doi.org/10.1039/C7EN01160A