References
- Aydin, I., F. Aydin, A. Saydut, E. G. Bakirdere and C. Hamamci. 2010. Hazardous metal geochemistry of sedimentary phosphate rock used for fertilizer (Mazidag, SE Anatolia, Turkey). Microchemical Journal 96:247-251. https://doi.org/10.1016/j.microc.2010.03.006
- Bai, Y., J. Tong, C. Bian and S. Xia. 2013. An electrochemical microsensor based on molybdophosphate complex for fast determination of total phosphorus in water. In: Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 7-10, Suzhou, China.
- Bai, Y., J. Tong, J. Wang, C. Bian and S. Xia. 2014. Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water. IET Nanobiotechnology 8(1):31-36. https://doi.org/10.1049/iet-nbt.2013.0041
- Berchmans, S., T. B. Issa and P. Singh. 2012. Determination of inorganic phosphate by electroanalytical methods: a review. Analytica Chimica Acta 729:7- 20. https://doi.org/10.1016/j.aca.2012.03.060
- Bricker, S. B., C. G. Clement, D. E. Pirhalle, S. P. Orlando and D. R. G. Farrow. 1999. National Estuarine Eutrophication Assessment. Effects of nutrient enrichment in the Nation's estuaries. NOAA.
- Chang, N.-B., Z. Xuan and Y. J. Yang. 2013. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sensing of Environment 134:100-110. https://doi.org/10.1016/j.rse.2013.03.002
- Chen, J. and W. Quan. 2012. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(1):273-280. https://doi.org/10.1109/JSTARS.2011.2174339
- Cleary, J., C. Slater, C. McGraw and D. Diamond. 2008. An autonomous microfluidic sensor for phosphate: on-site analysis of treated wastewater. IEEE Sensors Journal 8 (5):508-515. https://doi.org/10.1109/JSEN.2008.918259
- Ejhieh, A. N. and N. Masoudipour. 2010. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbonpaste electrode (SMZ-CPE). Analytica Chimica Acta 658(1):68-74. https://doi.org/10.1016/j.aca.2009.10.064
- Ganesh, S., F. Khan, M. K. Ahmed, P. Velavendan, N. K. Pandey and U. K. Mudali. 2012. Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Science and Technology 66(12):2653-2658. https://doi.org/10.2166/wst.2012.468
- Ganjali, M. R., M. Hosseini, F. Aboufazeli, F. Faridbod, H. Goldooz and A. R. Badiei. 2012. A highly selective fluorescent probe for pyrophosphate detection in aqueous solutions. The Journal of Biological and Chemical Luminescence 27(1):20-23. https://doi.org/10.1002/bio.1316
- Gao, Y., J. Gao, H. Yin, C. Liu, T. Xia, J. Wang and Q. Huang. 2015. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management 151:33-43. https://doi.org/10.1016/j.jenvman.2014.11.036
- He, G., L. Zhao, K. Chen, Y. Liu and H. Zhu. 2013. Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO43- in aqueous solution. Talanta 106:73-78. https://doi.org/10.1016/j.talanta.2012.11.064
- Hosseini, M., M. R. Ganjali, M. Tavakoli, P. Norouzi, F. Faridbod, H. Goldooz and A. Badiei. 2011. Pyrophosphate selective recognition in aqueous solution based on fluorescence enhancement of a new aluminium complex. Journal of Fluorescence 21(4):1509-1513. https://doi.org/10.1007/s10895-011-0837-z
- Jayawardane, B. M., I. D. McKelvie and S. D. Kolev. 2012. A paper-based device for measurement of reactive phosphate in water. Talanta 100:454-460. https://doi.org/10.1016/j.talanta.2012.08.021
- Jonca, J., V. L. Fernandez, D. Thouron, A. Paulmier, M. Graco and V. Garcon. 2011. Phosphate determination in seawater: Toward an autonomous electrochemical method. Talanta 87:161- 167. https://doi.org/10.1016/j.talanta.2011.09.056
- Kjaer, H. A., P. Vallelonga, A. Svensson, M. E. L. Kristensen, C. Tibuleac and M. Bigler. 2013. Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores. Environmental Science and Technology 47:12325-12332. https://doi.org/10.1021/es402274z
- Kolliopoulos, A. V., D. K. Kampouris and C. E. Banks. 2015. Rapid and portable electrochemical quantification of phosphorus. Analytical Chemistry 87(8):4269-4274. https://doi.org/10.1021/ac504602a
- Korostynska, O., A. Mason and A. Al-Shamma'a. 2012. Monitoring of nitrates and phosphates in wastewater: current technologies and further challenges. International Journal on Smart Sensing and Intelligent Systems 5(1):149-176. https://doi.org/10.21307/ijssis-2017-475
- Krockel, L., H. Lehmann, T. Wieduwilt and M. A. Schmidt. 2014. Fluorescence detection for phosphate monitoring using reverse injection analysis. Talanta 125:107-113. https://doi.org/10.1016/j.talanta.2014.02.072
- Law al, A. T. and S. B. Adeloju. 2012. Polypyrrole Based amperometric and potentiometric phosphate biosensors:a comparative study. Journal of Applied Science 12(4):315-325. https://doi.org/10.3923/jas.2012.315.325
- Law al, A. T. and S. B. Adeloju. 2013. Progress and recent advances in phosphate sensors: a review. Talanta 114:191-203. https://doi.org/10.1016/j.talanta.2013.03.031
- Legiret, F. -E., V. J. Sieben, E. M. S. Woodward, S. K. A. K. Bey, M. C. Mowlem, D. P. Connelly and E. P. Achterberg. 2013. A high performance microfluidic analyser for phosphate measurements in marine water using the vanadomolybdate method. Talanta 116:382-387. https://doi.org/10.1016/j.talanta.2013.05.004
- Liu, W., Z. Du, Y. Qian and F. Li. 2013. A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles. Sensors and Actuators B 176:927- 931. https://doi.org/10.1016/j.snb.2012.10.074
- Modi, N. R., B. Patel, M. B. Patel and S. K. Menon. 2011. Novel monohydrogenphosphate ion-selective polymeric membrane sensor based on phenyl urea substituted calix[4]arene. Talanta 86:121-127. https://doi.org/10.1016/j.talanta.2011.08.042
- Moonrungsee, N., S. Pencharee and J. Jakmunee. 2015. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 36:204-209.
- Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 31-36.
- Norouzi, P., M. R. Ganjali, F. Faridbad, S. J. Shahtaher and H. A. Zamani. 2012. Electrochemical anion sensor for monohydrogen phosphate based on nano-composite carbon paste. International Journal of Electrochemical Science 7:2633-2642.
- Ren, K., J. Zhou and H. Wu. 2012. Materials for microfluidic chip fabrication. American Chemical Society 46(11):2396-2406.
- Tafesse, F. and M. Enemchukwu. 2011. Fabrication of new solid state phosphate selective electrodes for environmental monitoring. Talanta 83(5):1491-1495. https://doi.org/10.1016/j.talanta.2010.11.045
- Tong, J., C. Bian, Y. Li, Y. Bai and S. Xia. 2010. Design of a MEMS-based total phosphorus sensor with a microdigestion system. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), pp. 1-4, Chengdu, China.
- Wang, F., J. Tong, Y. Li, C. Bian, J. Sun and S. Xia. 2014. An electrochemical microsensor based on a AuNPs-modified microband array electrode for phosphate determination in fresh water samples. Sensors 14(12):24472-24482. https://doi.org/10.3390/s141224472
- Wang, J. J. and P. L. Bishop. 2010. Fabrication, calibration and evaluation of a phosphate ion-selective microelectrode. Environmental Pollution 158:3612-3617. https://doi.org/10.1016/j.envpol.2010.08.007
- Xie, C., J. Xu, J. Tang, S. A. Baig and X. Xu. 2013. Comparison of phosphorus determination methods by ion chromatography and molybdenum blue methods. Communications in Soil Science and Plant Analysis 44(17):2535-2545. https://doi.org/10.1080/00103624.2013.811518
- Zhang, G., B. Lu, Y. Wen, L. Lu and J. Xu. 2012. Facile fabrication of a cost-effective, water-soluble, and electrosynthesized poly (9-aminofluorene) fluorescent sensor for the selective and sensitive detection of Fe (III) and inorganic phosphates. Sensors and Actuators B 171-172:786-794. https://doi.org/10.1016/j.snb.2012.05.072
- Zhao, H. X., L. Q. Liu, Z. D. Liu, Y. Wang, X. J. Zhao and C. Z. Huang. 2011. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chemical Communications 47(9):2604-2606. https://doi.org/10.1039/c0cc04399k
Cited by
- Rapid detection of nutrients with electronic sensors: a review vol.5, pp.4, 2018, https://doi.org/10.1039/C7EN01160A