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A CLOSED-FORM SOLUTION FOR LOOKBACK OPTIONS

USING MELLIN TRANSFORM APPROACH

Junkee Jeon and Ji-Hun Yoon∗

Abstract. Lookback options, in the terminology of finance, are a type

of exotic option with path dependency whose the payoff depends on the

optimal (maximum or minimum) underlying asset’s price occurring over
the life of the option. In this paper, we exploit Mellin transform techniques

to find a closed-form solution for European lookback options in Black-

Scholes model.

1. Introduction

Look-back options are one of the most popular path-dependent derivatives
traded in markets all over the world. The payoffs of these options depend
on the realized minimum or maximum asset price over the life of the option.
Even though both analytic and numerical researches have done on the look-
back options, we still have a lot of open problems to solve them. The significant
contributions on the derivation of the closed solution of look-back option under
Black-Scholes framework can be given as follows. Goldman et al. [6] and Conze
and Viswanathan [2] studied exact formula for floating and fixed strike lookback
options by utilizing the probabilistic approaches. Dai et al. [3] derived a closed-
form solution for quanto lookback options. Also, He et al. [7] obtained joint
density functions to apply them to numerical analysis or Monte-Carlo simulation
for lookback option pricing.

This paper studies a technical work on the pricing of lookback options under
Mellin transform method. The Mellin transform is an integral transform, which
is regarded as the multiplicative version of the two-sided Laplace transform.
Up to now, to find the analytic formula for the valuation of options, many re-
searchers have used mainly probabilistic techniques. However, the pricing of a
given option with probabilistic approaches requires the complexity of the calcu-
lation. To resolve the problem, we exploit the analytic approach using Mellin
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transforms, which can be a very useful tool for the transformation of partial dif-
ferential equations. In fact, Panini and Srivastav [9] derived the pricing formula
of European and American vanilla options and basket options with the Mellin
transform. Also, Panini and Srivastav [10] obtained the pricing of perpetual
American options using Mellin transform techniques. Frontczak [5] applied the
technique of the Mellin transforms to a partial integro-differential equation and
found the pricing formula of options with jump diffusion models. Elshegmani
and Ahmed [4] obtained analytical solution for an arithmetic Asian option using
Mellin transforms. Also, Yoon and Kim [12] used double Mellin transforms to
study European vulnerable options under stochastic (the Hull-White) interest
rates as well as constant interest rate and Yoon [11] found a closed-form solution
for European options in Black-Scholes model with stochastic interest rate using
Mellin transform.

In this paper, we derive a closed formula for European lookback option
(Floating strike lookback option) in Black-Scholes model using Mellin trans-
form method. Before discussing this, we should consider the method of images
mentioned in [1]. The method of images is closely connected with the reflec-
tion principle of the expectations solution. Based upon the PDE method of
images, Buchen [1] derived the pricing formula of Barrier options more easily
than the existing method. Using the method of images enables us to transform
the P.D.E of the European lookback option with two conditions (boundary and
final condition) into the P.D.E with the final condition of the extended range of
underlying asset, and then we can solve the pricing formula of lookback option
using Mellin transform approaches.

This article is organized as follows. Section 2 considers a floating strike
lookback put option and obtains the partial differential equation for the option.
Section 3 applies the method of images and the Mellin transform to obtain a
closed-form analytic solution for the lookback option. The concluding remarks
are mentioned in Section 4.

2. Floating strike lookback option

2.1. Model formulation

In this section, we consider the floating strike lookback option with the fol-
lowing underlying asset price model under a risk-neutral probability measure Q
:

dSt = rStdt+ σStdWt, (1)

where St is an underlying asset price and Wt is a 1-dimensional standard Brow-
nian motion. By using the notation

S̄t = maxu≤tSu, H(St, S̄t) = S̄t − St, (2)
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we obtain the risk-neutral price of the floating strike lookback option, which is
denoted by v(t, s, y) at time t ∈ [0, T ]:

v(t, s, y) = EQ,s,y[e−r(T−t)H(ST , S̄T )|Ft],
where Ft is a σ-algebra generated by the standard Brownian motion W up to
time t, St = s and S̄t = y. Then, from Feynman-Kac formula (cf, [8]), we obtain
the following Black-Scholes-Merton P.D.E for v(t, s, y)

∂v

∂t
+

1

2
σ2s2

∂2v

∂s2
+ rs

∂v

∂s
− rv = 0 (3)

with the region {(t, s, y) : 0 ≤ t < T, 0 ≤ s ≤ y}. Also, the final and boundary
conditions are given by

v(T, s, y) = H(s, y), 0 ≤ s ≤ y,
∂v

∂y
(t, y, y) = 0, 0 ≤ t < T,

(4)

respectively.

2.2. The review of the P.D.E method of images : Up-and-Out Barrier
option

Most of all, to find the closed solution of the above floating lookback option,
we should consider the P.D.E method of images as seen in [1]. By the method of
image solution, the P.D.E of up-and-out Barrier option P (t, x) with underlying
asset Xt = x

LP = 0,

P (t, B) = 0, 0 ≤ t < T,

P (T, x) = f(x), 0 ≤ x < B

(5)

is transformed into

LP = 0,

P (t, B) = 0, 0 ≤ t < T,

P (T, x) = f(x)1{x<B} −
(
B

x

) 2r
σ2
−1

f(
B2

x
)1{x>B}, 0 ≤ x <∞,

(6)

where L = ∂
∂t + 1

2σ
2x2 ∂2

∂x2 + rx ∂
∂x − r· (Black-Scholes operator) and f(x) is an

expiry payout function.

2.3. The review of the Mellin transform approach

The method of the mellin transform enables us to derive an closed solution of
the floating lookback option v(t, s, y). For a locally Lebesgue integrable function
g(x), x ∈ R+, the Mellin transform M(g(x), w), w ∈ C is defined by

M(g(x), w) := ĝ(w) =

∫ ∞
0

g(x)xw−1dx,
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and if a < Re(w) < b and c such that a < c < b exists, the inverse of the Mellin
transform is expressed by

g(x) =M−1(ĝ(w)) =
1

2πi

∫ c+i∞

c−i∞
ĝ(w)x−wdw.

3. The derivation of the floating strike lookback option price :
Mellin transform approach

In this section, we are going to derive the closed formula of the lookback
option using the method of images and the Mellin transform techniques men-
tioned above. Most of all, to solve the P.D.E of (3)-(4), we have to find the final
condition v(T, s, y) generated from the method of images. Then, we can obtain
the closed solution the P.D.E of (3)-(4) by applying the Mellin transform.

If we differentiate both sides of the equation (3) with respect to y, we have

∂vy
∂t

+
1

2
σ2s2

∂2vy
∂s2

+ rs
∂vy
∂s
− rvy = 0, (7)

where vy = ∂v
∂y , and the terminal and boundary conditions are given by

vy(t, s, y)|s=y = 0, 0 ≤ t < T

vy(T, s, y) =
∂H

∂y
. 0 ≤ s < y

(8)

Now, let u(t, s, y) = vy(t, s, y). Then, equation (7)-(8) yield

∂u

∂t
+

1

2
σ2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru = 0,

u(t, s, y)|s=y = 0, 0 ≤ t < T

u(T, s, y) =
∂H

∂y
, 0 ≤ s < y.

(9)

Here, it implies that equation (9) is the up-and-out Barrier option stated
in (5) by regrading y as a barrier of s. Therefore, by the method of images
mentioned in section 2.2, we have the following P.D.E of u(t, s, y) with the
terminal condition of the extended range of the underlying asset

∂u

∂t
+

1

2
σ2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru = 0,

u(T, s, y) =
∂H

∂y
(s, y)1{s<y} −

∂H∗

∂y
(s, y)1{s>y}, 0 ≤ s <∞.

(10)
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Now, from the final condition u(T, s, y) of (10), we have the relational ex-
pression

v(T, s, y)− v(T, s, s) =

∫ y

s

u(T, s, ξ)dξ

=

∫ y

s

∂H

∂ξ
(s, ξ)1{s<ξ}dξ −

∫ y

s

∂H∗

∂ξ
(s, ξ)1{s>ξ}dξ

= 1{s<y} (H(s, y)−H(s, s)) +

∫ s

y

∂H∗

∂ξ
(s, ξ)1{s>ξ}dξ.

(11)

Hence,

v(T, s, y) = H(s, s)1{s>y} +H(s, y)1{s<y} + 1{s>y}

∫ s

y

∂H∗

∂ξ
(s, ξ)dξ. (12)

Therefore, from (12), the equation (3)-(4) lead to

∂v

∂t
+

1

2
σ2s2

∂2v

∂s2
+ rs

∂v

∂s
− rv = 0,

v(T, s, y) = H(s, s)1{s>y} +H(s, y)1{s<y} + 1{s>y}

∫ s

y

∂H∗

∂ξ
(s, ξ)dξ

(13)

in the region {0 ≤ s <∞, 0 ≤ t ≤ T}.
Now, to solve the P.D.E of the equation (13), if we use the substitutions

z = s
y and q(t, z) = v(t, sy , 1) (Reduction of Dimension) then, v(t, s, y) satisfies

v(t, s, y) = yv

(
t,
s

y
, 1

)
= yq

(
t,
s

y

)
, 0 ≤ t ≤ T, y > 0, (14)

and the equation (13) leads to the following equation

∂q

∂t
+

1

2
σ2z2

∂2q

∂z2
+ rz

∂q

∂z
− rq = 0, 0 ≤ t < T, 0 < z <∞

θ(z) = q(T, z) = H(z, z)1{z>1} +H(z, 1)1{z<1} + 1{z>1}

∫ z

1

∂H∗

∂ξ
(z, ξ)dξ.

(15)

From H(s, y) = y−s in (2), we have H(z, z) = 0, H(z, 1) = 1−z and ∂H
∂ξ (z, ξ) =

1. Also, the method of image solutions mentioned in [1] yields

∂H∗

∂ξ
(z, ξ) =

(
ξ

z

) 2r
σ2
−1

∂H

∂ξ
(
ξ2

z
, ξ) =

(
ξ

z

) 2r
σ2
−1

. (16)
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Hence, the θ(z) in (15) satisfies

θ(z) = (1− z)1{z<1} + 1{z>1}

∫ z

1

(
ξ

z

) 2r
σ2
−1

dξ,

= (1− z)1{z<1} + 1{z>1}z
2k3

∫ z

1

ξk1−1dξ, (where k3 =
1− k1

2
, k1 =

2r

σ2
)

= (1− z)1{z<1} + 1{z>1}z
2k3

(
1− zk1
k1

)
= (1− z)1{z<1} −

1

k1
1{z>1}

(
z2k3 − 1

)
+

1

k1
1{z>1} (z − 1) .

(17)

Theorem 3.1. Under the given final and boundary conditions in (4), the closed
formula of the floating strike lookback put option option is given by

v(t, s, y) =

(
1 +

σ2

2r

)
sN

(
d1

(
T − t, s

y

))
+ e−r(T−t)yN

(
−d2

(
T − t, s

y

))
− σ2

2r
e−r(T−t)

(y
s

) 2r
σ2

sN
(
−d2

(
T − t, y

s

))
− s,

(18)

where N (w) = 1√
2π

∫ w
−∞ e−

1
2η

2

dη and d1,2(T − t, s) are the functions defined by

d1,2(T − t, ς) =
1

σ
√
T − t

(
ln ς +

(
r ± 1

2
σ2

)
(T − t)

)
,

respectively.

Proof. First, to solve the P.D.E of (15), we use the following relation

q(t, z) =
1

2πi

∫ c+i∞

c−i∞
q̂(t, ω)z−ωdω, (19)

where q̂(t, ω) is the Mellin transform of q(t, z).
Then, the P.D.E of (15) yields

dq̂

dt
+

(
σ2

2

(
ω2 + ω

)
− rω − r

)
q̂ = 0, (20)

which has the general solution

q̂(t, ω) = θ̂(ω)e−
1
2σ

2{ω2+(1−k1)ω−k1}t, (21)

where θ̂(ω) is the Mellin transform of θ(z) = q(T, z) and k1 = 2r
σ2 . Hence, the

Mellin inverse of (19) gives

q(t, z) =
1

2πi

∫ c+i∞

c−i∞
θ̂(ω)e−

1
2σ

2{ω2+(1−k1)ω−k1}(T−t)z−ωdω. (22)
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In (22), if we define γ(z) = 1
2πi

∫ c+i∞
c−i∞ e−

1
2σ

2{ω2+(1−k1)ω−k1}(T−t)z−ωdω, then

it satisfies γ(z) = e−k2(
k1+1

2 )
2

1
2πi

zk3

σ
√

2π(T−t)
e
− 1

2

(
log z

σ
√
T−t

)2

, where k2 = σ2

2 (T − t)

and k3 = 1−k1
2 . (Refer to [9])

Lemma 3.2. Relation to multiplicative convolution Let A and B be func-
tion from Rn+ into C. Let Â(w) be the Mellin transform of A(x) and B̂(w) be

the Mellin transform of B(x) given by •̂(w) =
∫∞
0
•(x)xw−1dx.

Then, the Mellin convolution of A and B is given by the inverse Mellin trans-
form of Â(w)B̂(w) as follows

A(x) ∗B(x) = M−1w

[
Â(w)B̂(w);x

]
=

∫ ∞
0

u−1A
(x
u

)
B(u)du,

where A(x)∗B(x) is the symbol of the Mellin convolution of A and B and M−1w
is the symbol of the inverse Mellin transform.

In (17), if we define (1−z)1{z<1}, − 1
k1

1{z>1}
(
z2k3 − 1

)
and 1

k1
1{z>1} (z − 1)

as h1(z), h2(z) and h3(z), respectively, then θ(z) = h1(z) +h2(z) +h3(z). Also,

since θ̂(ω) is the Mellin transform of θ(z) and e−
1
2σ

2{ω2+(1−k1)ω−k1}(T−t) is the
Mellin transform of γ(z), q(t, z) in (22) leads to the following formula by using
the relation of the Mellin convolution mentioned in Lemma 1 :

q(t, z) =

∫ ∞
0

θ(p)γ(
z

p
)
1

p
dp,

=

∫ ∞
0

(h1(p) + h2(p) + h3(p)) γ(
z

p
)
1

p
dp,

=

∫ ∞
0

h1(p)γ(
z

p
)
1

p
dp+

∫ ∞
0

h2(p)γ(
z

p
)
1

p
dp−

∫ ∞
0

h3(p)γ(
z

p
)
1

p
dp,

= q1(t, z) + q2(t, z) + q3(t, z).

(23)

Hence, by transforming variables, they satisfy

q1(t, z) =

∫ ∞
0

h1(p)γ(
z

p
)
1

p
dp,

=
e−k2

(
k1+1

2

)2
σ
√

2π(T − t)

∫ 1

0

zk3

pk3+1
(1− p)e

− 1
2

(
log( z

p
)

σ
√
T−t

)2

dp,

= e−r(T−t)N (−d2(T − t, z))− zN (−d1(T − t, z)),(
by using z∗ =

log( zp )

σ
√
T − t

)
(24)
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where d1,2(T − t, z) = 1
σ
√
T−t

[
log z +

(
r ± σ2

2

)
(T − t)

]
,

q2(t, z) =

∫ ∞
0

h2(p)γ(
z

p
)
1

p
dp,

= − 1

k1

e−k2
(
k1+1

2

)2
σ
√

2π(T − t)

∫ ∞
1

zk3

pk3+1
(p2k3 − 1)e

− 1
2

(
log( z

p
)

σ
√
T−t

)2

dp,

= − 1

k1

e−k2k1

σ
√

2π(T − t)
z2k3

∫ ∞
1

(
z

p

)−k3 1

p
e−

(log z
p )

2
+k22(k1−1)2

4k2 dp

+
1

k1

e−k2
(
k1+1

2

)2
σ
√

2π(T − t)

∫ ∞
1

zk3

pk3+1
e
− 1

2

(
log( z

p
)

σ
√
T−t

)2

dp,

= − 1

k1

e−r(T−t)

σ
√

2π(T − t)
z2k3

∫ ∞
1

1

p
e
− 1

2

(
log( zp )+2k2k3√

2k2

)2

dp

+
1

k1

e−k2
(
k1+1

2

)2
σ
√

2π(T − t)

∫ ∞
1

zk3

pk3+1
e
− 1

2

(
log( z

p
)

σ
√
T−t

)2

dp,

= − 1

k1
z2k3e−r(T−t)N

(
−d2

(
T − t, 1

z

))
+

1

k1
e−r(T−t)N (d2(T − t, z)),by using ẑ =

log
(
z
p

)
+ 2k2k3

√
2k2

, and z∗ =
log( zp )

σ
√
T − t



(25)

and

q3(t, z) =

∫ ∞
0

h3(p)γ(
z

p
)
1

p
dp,

=
1

k1

e−k2
(
k1+1

2

)2
σ
√

2π(T − t)

∫ ∞
1

zk3

pk3+1
(p− 1)e

− 1
2

(
log( z

p
)

σ
√
T−t

)2

dp,

=
1

k1
zN (d1(T − t, z))− 1

k1
e−r(T−t)N (d2(T − t, z)).(

by using z∗ =
log( zp )

σ
√
T − t

)
(26)
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Finally, by combining (23), (24), (25) and (26), it leads to the following equation

q(t, z) = e−r(T−t)N (−d2(T − t, z))− z (1−N (d1(T − t, z)))

− σ2

2r
z2k3e−r(T−t)N (−d2(T − z, z−1)) +

σ2

2r
e−r(T−t)N (d2(T − t, z))

+
σ2

2r
zN (d1(T − t, z))− σ2

2r
e−r(T−t)N (d2(T − t, z))

=

(
1 +

σ2

2r

)
zN (d1(T − t, z)) + e−r(T−t)N (−d2(T − t, z))

− σ2

2r
e−r(T−t)z1−

2r
σ2N (−d2(T − t, z−1))− z. (27)

By using z = s
y and (14), we obtain the closed formula of the floating strike

lookback put option as follows :

v(t, s, y) =

(
1 +

σ2

2r

)
sN

(
d1

(
T − t, s

y

))
+ e−r(T−t)yN

(
−d2

(
T − t, s

y

))
− σ2

2r
e−r(T−t)

(y
s

) 2r
σ2

sN
(
−d2

(
T − t, y

s

))
− s.

(28)

The proof is completed. �

4. Conclusion

In this paper, we have demonstrated that a closed form solution for the
European floating lookback option can be derived by taking advantage of the
method of images and Mellin transform approaches. The Mellin transform
methods help us resolve the complexity of the calculation in comparison to
the probabilistic techniques, Fourier transforms and the method of change of
variables in other types of options as well as the lookback options. Finally,
studies of the Mellin transforms for many other derivatives are also currently
underway.
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