초록
모델기반 FDI 과정에서 모델오차와 센서잡음은 피할 수 없으므로 견실성은 모델기반 FDI에서 매우 중요하다. 본 연구에서는 이러한 선형모델 오차 및 신호잡음으로 인하여 고장진단 과정에서 발생하는 결함판단 오류들을 비선형 NARX (Nonlinear Auto Regressive eXogenous) 모델과 칼만추정기를 적용하여 개선하는 방법을 제안하였다. 최종 고장판단은 퍼지로직을 이용하여 발생하는 오차의 추이에 대한 확률로 결정하여 순간적인 신호잡음에 강인하도록 설계하였다. 시뮬레이션을 통하여 운용 환경조건에서 엔진제어기의 고장허용에 따른 성능을 확인하였다.
Robustness is essential for model based FDI (Fault Detection and Isolation) and it is inevitable to have modeling errors and sensor signal noises during the process of FDI. This study suggests an improved method by applying NARX (Nonlinear Auto Regressive eXogenous) model and Kalman estimator in order to cope with problems caused by linear model errors and sensor signal noises in the process of fault diagnoses. Fault decision is made by the probability of the trend of gradually accumulated errors applying Fuzzy logic, which are robust to instantaneous sensor signal noises. Reliability of fault diagnosis is verified under various fault simulations.