DOI QR코드

DOI QR Code

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo (School of Mechatronic Engineering, Southwest Petroleum University)
  • Received : 2015.06.29
  • Accepted : 2016.04.04
  • Published : 2016.06.10

Abstract

To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation

References

  1. Aguilera, J. and Fam, A. (2013), "Retrofitting tubular steel T-joints subjected to axial compression in chord and brace members using bonded FRP plates or through-wall steel bolts", Eng. Struct., 48, 602-610. https://doi.org/10.1016/j.engstruct.2012.09.018
  2. Chen, X.X., Chen, Y. and Wang, J. (2015), "Plate reinforced square hollow section X-joints subjected to inplane moment", J. Central South U., 22(3), 1002-1015. https://doi.org/10.1007/s11771-015-2611-x
  3. Chiew, S.P., Zhang, J.C., Shao, Y.B. and Qiu, Z.H. (2012), "Experimental and numerical analysis of complex welded tubular DKYY-joints", Adv. Struct. Eng., 15(9), 1573-1582. https://doi.org/10.1260/1369-4332.15.9.1573
  4. Choi, B.J., Lee, E.T., Yang, J.G. and Kang, C.K. (2012), "Axial capacity of circular hollow section T-joints using grade HSB 600 steel", Int. J. Steel Struct., 12(4), 483-494. https://doi.org/10.1007/s13296-012-4003-5
  5. Choo, Y.S., Li, B.H., Liew, J.Y.R. and van der Vegte, G.J. (1998), "Static strength of T-joints reinforced with doubler or collar plates", Proceedings of the 8th International Symposium on Tubular Structures, Singapore, August, pp. 139-145.
  6. Choo, Y.S., Liang, J.X. and van der Vegte, G.J. (2004a), "Static strength of doubler plate reinforced CHS Xjoints loaded by in-plane bending", J. Constr. Steel Res., 60(12), 1725-1744. https://doi.org/10.1016/j.jcsr.2004.05.004
  7. Choo, Y.S., Liang, J.X., van der Vegte, G.J. and Liew, J.Y.R. (2004b), "Static strength of collar plate reinforced CHS X-joints loaded by in-plane bending", J. Constr. Steel Res., 60(12), 1745-1760. https://doi.org/10.1016/j.jcsr.2004.05.005
  8. Choo, Y.S., van der Vegte, G.J., Zettlemoyer, N. and Li, B.H. (2005), "Static strength of T-joints reinforced with doubler or collar plates-part I: experimental investigations", J. Eng. Struct., ASCE, 131(1), 119-128. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(119)
  9. Fung, T.C., Chan, T.K. and Soh, C.K. (1999), "Ultimate capacity of doubler plate reinforced tubular joints", J. Eng. Struct., ASCE, 125(8), 891-899. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(891)
  10. Gandhi, P., Raghava, G. and Ramachandra Murthy, D.S. (2000), "Fatigue behaviour of internally ringstiffened welded steel tubular joints", J. Eng. Struct., ASCE, 126(7), 809-815. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(809)
  11. Gao, F., Guan, X.Q., Zhu, H.P. and Xia, Y. (2015), "Hysteretic behaviour of tubular T-joints reinforced with doubler plates after fire exposure", Thin Wall. Struct., 92, 10-20. https://doi.org/10.1016/j.tws.2015.02.010
  12. Ghazijahani, T.G., Jiao, H. and Holloway, D. (2015), "Fatigue experiments on circular hollow sections with CFRP reinforced cutouts", J. Constr. Steel Res., 106, 322-328. https://doi.org/10.1016/j.jcsr.2015.01.002
  13. Hamid, A. and Esmaeil, Z. (2015), "Stress concentration factors induced by out-of-plane bending loads in ring-stiffened tubular KT-joints of jacket structures", Thin-Wall. Struct., 91, 82-95. https://doi.org/10.1016/j.tws.2015.02.011
  14. Hamid, A., Mohammad, A.L.-Y. and Shao, Y.B. (2013), "Chord-side SCF distribution of central brace in internally ring-stiffened tubular KT-joints: A geometrically parametric study", Thin-Wall. Struct., 70, 93-105. https://doi.org/10.1016/j.tws.2013.04.011
  15. Hamid, A., Amir, H.M. and Ali, Y. (2015), "Probability density functions of SCFs in internally ringstiffened tubular KT-joints of offshore structures subjected to axial loading", Thin-Wall. Struct., 94, 485-499. https://doi.org/10.1016/j.tws.2015.05.012
  16. Hoon, K.H., Wong, L.K. and Soh, A.K. (2001), "Experimental investigation of a doubler-plate reinforced tubular T-joint subjected to combined loadings", J. Constr. Steel Res., 57(9), 1015-1039. https://doi.org/10.1016/S0143-974X(01)00023-2
  17. Jin, Y.F. and Shao, Y.B. (2010), "Hysteretic analysis of circular tubular T-joints with chord reinforcement", J. Huazhong U., 27(2), 78-81.
  18. Kim, I.G., Chung, C.H., Shim, C.S. and Kim, Y.J. (2014), "Stress concentration factors of N-joints of concrete-filled tubes subjected to axial loads", Int. J. Steel Struct., 14(1), 1-11. https://doi.org/10.1007/s13296-014-1001-9
  19. Lesani, M., Bahaari, M.R. and Shokrieh, M.M. (2013), "Numerical investigation of FRP-strengthened tubular T-joints under axial compressive loads", Compos. Struct., 100, 71-78. https://doi.org/10.1016/j.compstruct.2012.12.020
  20. Li, T., Shao, Y.B. and Zhang, J.C. (2009), "Study on static strength of tubular joints reinforced with horizontal inner plate", Steel Constr., 24(123), 25-29.
  21. Lu, L.H., de Winkel, G.D., Yu, Y. and Wardenier, J. (1994), "Deformation limit for the ultimate strength of hollow section joints", Proceedings of the 6th International Symposium on Tubular Structures, Melbourne, Australia, December, p. 341-348.
  22. Pena, A. and Chacon, R. (2014), "Structural analysis of diamond bird-beak joints subjected to compressive and tensile forces", J. Constr. Steel Res., 98, 158-166. https://doi.org/10.1016/j.jcsr.2014.03.006
  23. Shao, Y.B., Zhang, J.C., Qiu, Z.H. and Shang, J.J. (2009), "Strength analysis of large-scale multiplanar tubular joints with inner-plate reinforcement", Int. J. Space Struct., 24(3), 161-177. https://doi.org/10.1260/026635109789867607
  24. Shao, Y.B., Li, T., Lie, S.T. and Chiew, S.P. (2011), "Hysteretic behaviour of square tubular T-joints with chord reinforcement under axial cyclic loading", J. Constr. Steel Res., 67(1), 140-149 https://doi.org/10.1016/j.jcsr.2010.08.001
  25. Thandavamoorthy, T.S., Madhava Rao, A.G. and Santhakumar, A.R. (1999), "Behavior of internally ringstiffened joints of offshore platforms", J. Eng. Struct., ASCE, 125(11), 1348-1352. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1348)
  26. Van der Vegte, G.J., Choo, Y.S., Liang, J.X., Zettlemoyer, N. and Liew, J.Y.R. (2005), "Static strength of Tjoints reinforced with doubler or collar plates, II: numerical simulations", J. Eng. Struct., ASCE, 131(1), 129-139. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(129)
  27. Wang, C.Y., Chen, Y., Chen, X.X. and Chen, D.F. (2015), "Experimental and numerical research on out-ofplane flexural property of plates reinforced SHS X-joints", Thin-Wall. Struct., 94, 466-477. https://doi.org/10.1016/j.tws.2015.05.010
  28. Yin, Y., Han, Q.H., Bai, L.J., Yang, H.D. and Wang, S.P. (2009), "Experimental study on hysteretic behaviour of tubular N-joints", J. Constr. Steel Res., 65(2), 326-334. https://doi.org/10.1016/j.jcsr.2008.07.006
  29. Zhang, F., Chen, Y.J. and Chen, Y.Y. (2004), "Effects of ring-stiffeners on the behaviour steel tubular joints", Spatial Struct., 10(1), 51-56.
  30. Zhu, L., Zhao, Y., Li, S.W., Huang, Y.X. and Ban, L.R. (2014), "Numerical analysis of the axial strength of CHS T-joints reinforced with external stiffeners", Thin-Wall. Struct., 85, 481-488. https://doi.org/10.1016/j.tws.2014.09.018

Cited by

  1. Effect of Geometric Parameters (β and τ) on Behaviour of Cold Formed Stainless Steel Tubular X-Joints vol.18, pp.3, 2018, https://doi.org/10.1007/s13296-018-0031-0
  2. Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve vol.23, pp.5, 2017, https://doi.org/10.12989/scs.2017.23.5.585
  3. Dynamic analysis of a cylindrical boom based on Miura origami vol.28, pp.5, 2018, https://doi.org/10.12989/scs.2018.28.5.607
  4. Static strength of CFRP-strengthened tubular TT-joints containing initial local corrosion defect vol.236, pp.None, 2016, https://doi.org/10.1016/j.oceaneng.2021.109484