References
- Abramson, L.W., Lee, T.S., Sharma, S. and Boyce, G.M. (2002), Slope Stability and Stabilization Methods, John Wiley & Sons.
- Andersson-Skold, Y., Torrance, J.K., Lind, B., Oden, K., Stevens, R.L. and Rankka, K. (2005), "Quick clay - A case study of chemical perspective in Southwest Sweden", Eng. Geol., 82, 107-118. https://doi.org/10.1016/j.enggeo.2005.09.014
- Azizian, A. and Popescu, R. (2005), "Finite element simulation of seismically induced retrogressive failure of submarine slopes", Can. Geotech. J., 42(6), 1532-1547. https://doi.org/10.1139/t05-032
- Biscontin, G. and Pestana, J.M. (2001), "Influence of peripheral velocity on vane shear strength of an artificial clay", Geotech. Test. J., 24(4), 423-429. https://doi.org/10.1520/GTJ11140J
- Bishop, A.W. (1967), "Progressive failure-with special reference to the mechanism causing it", Panel Discussion, Proceedings of the Geotechnical Conference, Norwegian Geotechnical Institute, Oslo, Norway, pp. 142-150.
- Bushra, I. and Robinson, R.G. (2012), "Shear strength behavior of cement treated marine clay", Int. J. Geotech. Eng., 6(4).
- Crawford, C.B. (1968), "Quick clays of eastern Canada", Eng. Geol., 2(4), 239-265. https://doi.org/10.1016/0013-7952(68)90002-1
- Chew, S.H., Kamruzzaman, A.H.M. and Lee, F.H. (2004), "Physicochemical and engineering behavior of cement treated clays", J. Geotech. Geoenviron. Eng., 130(7), 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)
- DeJong, J., Yafrate, N. and DeGroot, D. (2011), "Evaluation of undrained shear strength using full-flow penetrometers", J. Geotech. Geoenviron. Eng., 137(1), 14-26. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000393
- Einav, I. and Randolph, M. (2006), "Effect of strain rate on mobilised strength and thickness of curved shear bands", Geotechnique, 56(7), 501-504. https://doi.org/10.1680/geot.2006.56.7.501
- Geertsema, M. and Torrance, J.K. (2005), "Quick clay from the Mink Creek landslide near terrace, British Columbia: Geotechnical properties, mineralogy, and geochemistry", Can. Geotech. J., 42(3), 907-918. https://doi.org/10.1139/t05-028
- Horpibulsuk, S., Bergado, D.T. and Lorenzo, G.A. (2004), "Compressibility of cement-admixed clays at high water content", Geotechnique, 54(2), 151-154. https://doi.org/10.1680/geot.2004.54.2.151
- Horpibulsuk, S., Liu, M.D., Liyanapathirana, D.S. and Suebsuk, J. (2010), "Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model", Comput. Geotech., 37(1-2), 1-9. https://doi.org/10.1016/j.compgeo.2009.06.007
- Hossain, M. and Randolph, M. (2009), "Effect of strain rate and strain softening on the penetration resistance of spudcan foundations on clay", Int. J. Geomech., 9(3), 122-132. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:3(122)
- Kamruzzaman, A.H.M., Chew, S.H. and Lee, F.H. (2009), "Structuration and destructuration behavior of cement-treated Singapore marine clay", J. Geotech. Geoenviron. Eng., 135(4), 573-589. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(573)
- L'Heureux, J.-S., Locat, A., Leroueil, S., Demers, D. and Locat, J. (2014), "Landslides in sensitive clays - from geosciences to risk management", Landslides in Sensitive Clays, Advances in Natural and Technological Hazards Research, 36, 1-12. https://doi.org/10.1007/978-94-007-7079-9_1
- Longva, O., Janbu, N., Blikra, L.H. and Boe, R. (2003), "The 1996 Finneidfjord slide; seafloor failure and slide dynamics", EGS - AGU - EUG Joint Assembly Meeting, Nice, France.
- Meijer, G. and Dijkstra, J. (2013), "A novel methodology to regain sensitivity of quick clay in a geotechnical centrifuge", Can. Geotech. J., 50(9), 995-1000. https://doi.org/10.1139/cgj-2012-0435
- Mitchell, J.K. (1976), "The properties of cement-stabilized soils", Proceedings of Residential Workshop on Materials and Methods for Low Cost Road, Leura, Australia, September, pp. 365-401.
- Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, John Wiley & Sons.
- Park, D.S. (2012), "Effects of chemical additives on the properties of Young Bay Mud", Int. J. Geo-Eng., 4(3), 29-35.
- Park, D.S., Kutter, B.L. and DeJong, J. (2010), "Centrifuge modeling of a sensitive clay slope for simulation of strain softening", Proceedings of the 7th International Conference on Physical Modelling in Geotechniques, International Society for Soil Mechanics and Geotechnical Engineering, Zurich, Switzerland, July.
- Penner, E. (1963), "Sensitivity in Leda Clay", Nature, 197(486).
- Randolph, M.F. (2012), "Offshore geotechnics - The challenges of deepwater soft sediments", Geotechnical Engineering State of the Art and Practice, 241-271. DOI: 10.1061/9780784412138.0010
- Randolph, M.F. (2004), "Characterisation of soft sediments for offshore applications", Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization, (V.d.F. Mayne Ed.), Porto, Portugal, September, pp. 209-232.
- Sasanian, S. (2011), "The behaviour of cement stabilized clay at high water contents", Ph.D. Dissertation; The University of Western Ontario, London, ON, Canada.
- Suebsuk, J., Horpibulsuk, S., Chinkulkijniwat, A. and Liu, M.D. (2009), "Modeling the behavior of artificially structured clays by the Modified Structured Cam Clay model", International Symposium on Prediction and Simulation Methods for Geohazard Mitigation, (M.K. Oka Ed.), Taylor & Francis Group, London, Kyoto, Japan, pp. 313-318.
- Tappin, D.R., Watts, P. and Matsumoto, T. (2003), "Architecture and failure mechanism of the offshore slump responsible for the 1998 Papua New Guinea tsunami", Submarine Mass Movements and Their Consequences, Kluwer, the Netherlands, pp. 383-389.
- Verastegui Flores, R.D. and Van Impe, W.F. (2009), "Stress-strain behavior of artificially cemented Kaolin clay", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, (M. Hamza, M. Shahien and Y. El-Mossallamy Eds.), Alexandria, Egypt, October, pp. 283-286.
- Yafrate, N., DeJong, J., DeGroot, D. and Randolph, M. (2009), "Evaluation of remolded shear strength and sensitivity of soft clay using full-flow penetrometers", J. Geotech. Geoenviron. Eng., 135(9), 1179-1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000037
- Zhou, H. and Randolph, M.F. (2009), "Resistance of full-flow penetrometers in rate-dependent and strainsoftening clay", Geotechnique, 59(2), 79-86. https://doi.org/10.1680/geot.2007.00164
Cited by
- Geotechnical characteristics and consolidation properties of Tianjin marine clay vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.125
- Experimental study on freezing point of saline soft clay after freeze-thaw cycling vol.15, pp.4, 2016, https://doi.org/10.12989/gae.2018.15.4.997
- Compression and shear responses of structured clays during subyielding vol.18, pp.2, 2016, https://doi.org/10.12989/gae.2019.18.2.121
- Thaw consolidation behavior of frozen soft clay with calcium chloride vol.18, pp.2, 2016, https://doi.org/10.12989/gae.2019.18.2.189