References
- Amitava, G. and Falzaranoa, J. (2015), "Application of multi objective genetic algorithm in ship hull optimization", Ocean Syst. Eng., Int. J., 5(2), 91-107. https://doi.org/10.12989/ose.2015.5.2.091
- Athawale, V.M. and Chakraborty, S. (2010), "A TOPSIS method-based approach tOmachine tool selection", International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh, January.
- Bartolozzi, G., Baldanzini, N., Pierini, M. and Zonfrillo, G. (2015), "Static and dynamic experimental validation of analytical homogenization models for corrugated core sandwich panels", Comp. Struct., 125, 343-353. https://doi.org/10.1016/j.compstruct.2015.02.014
- Behzadian, M., Otaghsara, S.K., Yazdani, M. and Ignatius, J. (2012), "A state-of the-art survey of TOPSIS applications", Expert Syst. Appl., 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
- Biagi, R. and Bart-Smith, H. (2012), "In-plane column response of metallic corrugated core sandwich panels", Int. J. Solid. Struct., 49(26), 3901-3914. https://doi.org/10.1016/j.ijsolstr.2012.08.015
- Chang, W.S., Krauthammer, T. and Ventsel, E. (2006), "Elasto-plastic analysis of corrugated-core sandwich plates", Mech. Adv. Mater. Struc., 13(2), 151-160. https://doi.org/10.1080/15376490500451767
- Collette, Y. and Siarry, P. (2013), Multiobjective Optimization: Principles and Case Studies (Decision Engineering), Springer, New York, NY, USA.
- Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, Washington, USA.
- Diweker, U.M. and Kalagnanam, J.R. (1997), "Efficient sampling technique for optimization under uncertainty", AIChE J., 43(2), 440-447. https://doi.org/10.1002/aic.690430217
- Diweker, U.M. and Urmila M. (2003), "A novel sampling approach tocombinatorial optimization under uncertainty", Comput. Optim. Appl., 24(3), 335-371. https://doi.org/10.1023/A:1021866210039
- Fu, Y., Diweker, U.M., Young, D. and Cabezas, H. (2000), "Process design for the environment: A multiobjective framework under uncertainty", Clean Product. Processes, 2(2), 92-107. https://doi.org/10.1007/s100980000060
- Gadakh, V.S. (2012), "Parametric optimization of wire electrical discharge machining using TOPSIS method", Adv. Product. Eng. Manage., 7(3), 157-164. https://doi.org/10.14743/apem2012.3.138
- Ghashochi-Bargh, H. and Sadr, M.H. (2014), "A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panel", Struct. Eng. Mech., Int. J., 52(6), 1209-1224. https://doi.org/10.12989/sem.2014.52.6.1209
- Guha, A. and Falzanaro, J. (2015), "Application of multi objective genetic algorithm in ship hull optimization", Ocean Syst. Eng., Int. J., 5(2), 91-107. https://doi.org/10.12989/ose.2015.5.2.091
- Kalagnanam, J.R. and Diweker, U.M. (1997), "An efficient sampling technique for off-line quality control", Technometrics, 39(3), 308-319. https://doi.org/10.1080/00401706.1997.10485122
- Kaveh, A., Shojaei, I., Gholipour, Y. and Rahami, H. (2013), "Seismic design of steel frames using multiobjective optimization", Struct. Eng. Mech., Int. J., 45(2), 211-232. https://doi.org/10.12989/sem.2013.45.2.211
- Khalkhali, A. (2015), "Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAII", J. Cent. South Univ., 22(1), 121-133. https://doi.org/10.1007/s11771-015-2502-1
- Khalkhali, A. and Safikhani, H. (2012), "ParetObased multi-objective optimization of cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms", Eng. Optim., 44 (1), 105-118. https://doi.org/10.1080/0305215X.2011.564619
- Khakhali, A., Nariman-zadehabc, N., Darvizeha, A., Masoumid, A. and Notghi, B. (2010), "Reliabilitybased robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties", Int. J. Crashworth., 15(4), 443-456. https://doi.org/10.1080/13588261003696458
- Khalkhali, A., Khakshournia, S. and Nariman-Zadeh, N. (2014), "A hybrid method of FEM, modified NSGA-II and TOPSIS for structural optimization of sandwich panels with corrugated core", J. Sandw. Struct. Mater., 16(4), 398-417. https://doi.org/10.1177/1099636214531516
- Khalkhali, A., Khakshournia, S. and Saberi, P. (2016), "Optimal design of functionally graded PmPV/CNT nanocomposite cylindrical tube for purpose of torque transmission", J. Cent. South Univ., 23(2), 362-369. https://doi.org/10.1007/s11771-016-3081-5
- Lee, D., Gonzalez, L.F., Periaux, J., Srinivas, K. and Onate, E. (2011), "Hybrid-game strategies for multiobjective design optimization in engineering", Comp. Fluid., 47(1), 189-204. https://doi.org/10.1016/j.compfluid.2011.03.007
- Li, G., Meng, Z. and Hu, H. (2015), "An adaptive hybrid approach for reliability-based design optimization", Struct. Multidisc. Optimiz., 51(5), 1051-1065. https://doi.org/10.1007/s00158-014-1195-7
- Lingshuang, K., Chunhua, Y., Shenping, X. and Gang, C. (2013), "Stochastic optimization method based on HSS technique and expert knowledge for a metallurgical blending process", Proceedings of the 3rd International Conference on Intelligent System Design and Engineering Applications (ISDEA), Changsha, China, October, pp. 1290-1293.
- Lonn, D., Oman, M., Nilsson, L. and Simonsson, K. (2009), "Finite element based robustness study of a truck cab subjected tOimpact loading", Int. J. Crashworth., 14, 111-124. https://doi.org/10.1080/13588260802412992
- Lu, T.J., Hutchinson, J.W. and Evans, A.G. (2001), "Optimal design of flexural actuator", J. Mech. Phys. Solid., 49(9), 2071-2093. https://doi.org/10.1016/S0022-5096(01)00024-2
- Malekzadeh, K., Khalili, S.M.R. and Veysi-Gorgabad, A. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected tOlow-velocity impact", Mech. Adv. Mater. Struct., 22(8), 605-618. https://doi.org/10.1080/15376494.2013.828814
- Nariman-Zadeh, N., Darvizeh, A. and Jamali, A. (2006), "Pareto optimization of energy absorption of square aluminum columns using multi-objective genetic algorithms", Proceedings of IMechE, Part B: Journal of Engineering Manufacture, 220(2), 213-224. https://doi.org/10.1243/095440506X78156
- Papadrakakis, M., Lagaros, N.D. and Plevris, V. (2004), "Structural optimization considering the probabilistic system response", Int. J. Theor. Appl. Mech., 31(3-4), 361-393. https://doi.org/10.2298/TAM0404361P
- Richardson, J.N., Coelho, R.F. and Adriaenssens, S. (2015), "Robust topology optimization of truss structures with random loading and material properties: A multiobjective perspective", Comp. Struct., 154, 41-47. https://doi.org/10.1016/j.compstruc.2015.03.011
- Sepehri, A., Daneshmand, F. and Jafarpur, K. (2012), "A modified particle swarm approach for multiobjective optimization of laminated composite structures", Struct. Eng. Mech., Int. J., 42(3), 335-352. https://doi.org/10.12989/sem.2012.42.3.335
- Shidpour, H., Shahrokhi, M. and Bernard, A. (2013), "A multi-objective programming approach, integrated intOthe TOPSIS method, in order to optimize product design; in three-dimensional concurrent engineering", Comput. Indust. Eng., 64(4), 875-885. https://doi.org/10.1016/j.cie.2012.12.016
- Srinivas, N. and Deb, K. (1994), "Multiobjective optimization using nondominated sorting in genetic algorithms", Evol. Comp., 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221
- Subramanyan, K., Diweker, U.M. and Goyal, A. (2004), "Multi-objective optimization for hybrid fuel cells power system under uncertainty", J. Power Sour., 132(1), 99-112. https://doi.org/10.1016/j.jpowsour.2003.12.053
- Sun, H. and Betti, R. (2015) "A hybrid optimization algorithm with Bayesian inference for probabilistic model updating", Comput.-Aid. Civil Infra. Eng., 30(8), 602-619. https://doi.org/10.1111/mice.12142
- Tan, X.H. and Soh, A.K. (2007), "Multi-objective optimization of the sandwich panels with prismatic cores using genetic algorithms", Int. J. Solid. Struct., 44(17), 5466-5480. https://doi.org/10.1016/j.ijsolstr.2007.01.006
- Targul, T. (2012), "Multi objective size and topolgy optimization of dome structures", Struct. Eng. Mech., Int. J., 43(6), 795-821. https://doi.org/10.12989/sem.2012.43.6.795
- Valdevit, L., Hutchinson, J.W. and Evans, A.G. (2004), "Structurally optimized sandwich panels with prismatic cores", Int. J. Solid. Struct., 41(18-19), 5105-5124. https://doi.org/10.1016/j.ijsolstr.2004.04.027
- Wadley, H.N.G., Fleck, N.A. and Evans, A.G. (2003), "Fabrication and structural performance of periodic cellular metal sandwich structures", Compos. Sci. Technol., 63(16), 2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5
- Wei, K., He, R., Cheng, X., Zhang, R., Pei, Y. and Fang, D. (2014), "Fabrication and mechanical properties of lightweight ZrO2 ceramic corrugated core sandwich panels", Mater. Des., 64, 91-95. https://doi.org/10.1016/j.matdes.2014.07.038
- Yang, H., Zhu, Y., Lu, Q. and Zhang, J. (2015), "Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines", Renew. Energy, 78, 16-25. https://doi.org/10.1016/j.renene.2014.12.061
- Zhang, P.,Cheng,Y., Liu, J., Wang, C.,Hou, H. and Li, Y. (2015), "Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading", Mar. Struct., 40, 225-246. https://doi.org/10.1016/j.marstruc.2014.11.007
Cited by
- Robust multi-objective optimization of STMD device to mitigate buildings vibrations vol.11, pp.2, 2016, https://doi.org/10.12989/eas.2016.11.2.347
- Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall vol.20, pp.6, 2016, https://doi.org/10.12989/gae.2020.20.6.527