나노 인산칼슘 세라믹스의 바이오 응용

  • 발행 : 2016.03.31

초록

키워드

참고문헌

  1. S. Mann, "Biomineralization : Principles and Concepts in Bioinorganic Materials Chemistry," Oxford Univ. Press, Oxford, 2005.
  2. J. D. Pasteris, B. Wopenka, and E. Valsami-Jones, "Bone and Tooth Mineralization: Why apatite?," Elements, 4 [2] 97-104 (2008). https://doi.org/10.2113/GSELEMENTS.4.2.97
  3. R. J. Narayan, P. N. Kumta, C. Sfeir, D. H. Lee, D. Olton, and D. W. Choi, "Nanostructured Ceramics in Medical Devices: Applications and Prospects," Jom-Us, 56 [10] 38-43 (2004).
  4. E. A. Zimmermann, B. Busse, and R. O. Ritchie, "The Fracture Mechanics of Human Bone: Influence of Disease and Treatment," Bonekey Rep., 4 743 (2015).
  5. S. Bechtle, H. Ozcoban, E. T. Lilleodden, N. Huber, A. Schreyer, M. V. Swain, and G. A. Schneider, "Hierarchical Flexural Strength of Enamel: Transition from Brittle to Damage-toLerant Behaviour," J. R. Soc. Interface, 9 [71] 1265-74 (2012). https://doi.org/10.1098/rsif.2011.0498
  6. S. Padilla, I. Izquierdo-Barba, and M. Vallet-Regi, "High Specific Surface Area in Nanometric Carbonated Hydroxyapatite," Chem. Mater., 20 [19] 5942-44 (2008). https://doi.org/10.1021/cm801626k
  7. S. J. Kalita, A. Bhardwaj, and H. A. Bhatt, "Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering," Mat. Sci. Eng. C-Bio. S., 27 [3] 441-49 (2007). https://doi.org/10.1016/j.msec.2006.05.018
  8. J. Wang and L. L. Shaw, "Nanocrystalline Hydroxyapatite with Simultaneous Enhancements in Hardness and Toughness," Biomaterials, 30 [34] 6565-72 (2009). https://doi.org/10.1016/j.biomaterials.2009.08.048
  9. H. W. Kim, H. E. Kim, and V. Salih, "Stimulation of Osteoblast Responses to Biomimetic Nanocomposites of Gelatin-Hydroxyapatite for Tissue Engineering Scaffolds," Biomaterials, 26 [25] 5221-30 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.047
  10. M. Sato, M. A. Sambito, A. Aslani, N. M. Kalkhoran, E. B. Slamovich, and T. J. Webster, "Increased Osteoblast Functions on Undoped and Yttrium-Doped Nanocrystalline Hydroxyapatite Coatings on Titanium," Biomaterials, 27 [11] 2358-69 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.041
  11. Y. L. Hong, H. S. Fan, B. Li, B. Guo, M. Liu, and X. D. Zhang, "Fabrication, Biological Effects, and Medical Applications of Calcium Phosphate Nanoceramics," Mat. Sci. Eng. R., 70 [3-6] 225-42 (2010). https://doi.org/10.1016/j.mser.2010.06.010
  12. C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug, "Physico-Chemical Properties of Nanocrystalline Apatites: Implications for Biominerals and Biomaterials," Mat. Sci. Eng. C-Bio. S., 27 [2] 198-205 (2007). https://doi.org/10.1016/j.msec.2006.05.015
  13. C. Jager, T. Welzel, W. Meyer-Zaika, and M. Epple, "A Solid-State NMR Investigation of the Structure of Nanocrystalline Hydroxyapatite," Magn. Reson. Chem., 44 [6] 573-80 (2006). https://doi.org/10.1002/mrc.1774
  14. Y. Wang, S. Von Euw, F. M. Fernandes, S. Cassaignon, M. Selmane, G. Laurent, G. Pehau-Arnaudet, C. Coelho, L. Bonhomme-Coury, M. M. Giraud-Guille, F. Babonneau, T. Azais, and N. Nassif, "Water-Mediated Structuring of Bone Apatite," Nat. Mater., 12 [12] 1144-53 (2013). https://doi.org/10.1038/nmat3787
  15. H. N. Wang, Y. B. Li, Y. Zuo, J. H. Li, S. S. Ma, and L. Cheng, "Biocompatibility and Osteogenesis of Biomimetic Nano-Hydroxyapatite/Polyamide Composite Scaffolds for Bone Tissue Engineering," Biomaterials, 28 [22] 3338-48 (2007). https://doi.org/10.1016/j.biomaterials.2007.04.014
  16. B. Nies, S. Rossler, and A. Reinstorf, "Formation of Nano Hydroxyapatite - A Straightforward Way to Bioactivate Bone Implant Surfaces," Int. J. Mater. Res., 98 [7] 630-36 (2007). https://doi.org/10.3139/146.101510
  17. M. H. Hong, D. H. Lee, K. M. Kim, and Y. K. Lee, "Study on Bioactivity and Bonding Strength between Ti Alloy Substrate and $TiO_2$ Film by Micro-arc Oxidation," Thin Solid Films, 519 [20] 7065-70 (2011). https://doi.org/10.1016/j.tsf.2011.01.223
  18. L. Li, H. H. Pan, J. H. Tao, X. R. Xu, C. Y. Mao, X. H. Gu, and R. K. Tang, "Repair of Enamel by Using Hydroxyapatite Nanoparticles as the Building Blocks," J. Mater. Chem., 18 [34] 4079-84 (2008). https://doi.org/10.1039/b806090h
  19. A. Ashokan, D. Menon, S. Nair, and M. Koyakutty, "A Molecular Receptor Targeted, Hydroxyapatite Nanocrystal Based Multi-Modal Contrast Agent," Biomaterials, 31 [9] 2606-16 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.113
  20. B. Li, B. Guo, H. S. Fan, and X. D. Zhang, "Preparation of Nano-Hydroxyapatite Particles with Different Morphology and their Response to Highly Malignant Melanoma Cells in Vitro," Appl. Surf. Sci., 255 [2] 357-60 (2008). https://doi.org/10.1016/j.apsusc.2008.06.114
  21. P. Chen, H. L. Dai, Y. C. Han, M. Z. Yin, and S. P. Li, "Effect of Hydroxyapatite Nanoparticles on K562 Cells in Vitro," J. Wuhan Univ. Technol., 23 [2] 222-24 (2008). https://doi.org/10.1007/s11595-006-2222-3
  22. M. Epple, K. Ganesan, R. Heumann, J. Klesing, A. Kovtun, S. Neumann, and V. Sokolova, "Application of Calcium Phosphate Nanoparticles in Biomedicine," J. Mater. Chem., 20 [1] 18-23 (2010). https://doi.org/10.1039/B910885H
  23. P. A. Wingert, H. Mizukami, and A. E. Ostafin, "Enhanced Chemiluminescent Resonance Energy Transfer in Hollow Calcium Phosphate Nanoreactors and the Detection of Hydrogen Peroxide," Nanotechnology, 18 [29] 295707 (2007). https://doi.org/10.1088/0957-4484/18/29/295707
  24. S. Boonrungsiman, E. Gentleman, R. Carzaniga, N. D. Evans, D. W. McComb, A. E. Porter, and M. M. Stevens, "The Role of Intracellular Calcium Phosphate in Osteoblast-Mediated Bone Apatite Formation," P. Natl. Acad. Sci. USA, 109 [35] 14170-75 (2012). https://doi.org/10.1073/pnas.1208916109
  25. S. V. Dorozhkin, "Calcium Orthophosphates in Nature, Biology and Medicine," Materials, 2 [2] 399-498 (2009). https://doi.org/10.3390/ma2020399