참고문헌
- S. Mann, "Biomineralization : Principles and Concepts in Bioinorganic Materials Chemistry," Oxford Univ. Press, Oxford, 2005.
- J. D. Pasteris, B. Wopenka, and E. Valsami-Jones, "Bone and Tooth Mineralization: Why apatite?," Elements, 4 [2] 97-104 (2008). https://doi.org/10.2113/GSELEMENTS.4.2.97
- R. J. Narayan, P. N. Kumta, C. Sfeir, D. H. Lee, D. Olton, and D. W. Choi, "Nanostructured Ceramics in Medical Devices: Applications and Prospects," Jom-Us, 56 [10] 38-43 (2004).
- E. A. Zimmermann, B. Busse, and R. O. Ritchie, "The Fracture Mechanics of Human Bone: Influence of Disease and Treatment," Bonekey Rep., 4 743 (2015).
- S. Bechtle, H. Ozcoban, E. T. Lilleodden, N. Huber, A. Schreyer, M. V. Swain, and G. A. Schneider, "Hierarchical Flexural Strength of Enamel: Transition from Brittle to Damage-toLerant Behaviour," J. R. Soc. Interface, 9 [71] 1265-74 (2012). https://doi.org/10.1098/rsif.2011.0498
- S. Padilla, I. Izquierdo-Barba, and M. Vallet-Regi, "High Specific Surface Area in Nanometric Carbonated Hydroxyapatite," Chem. Mater., 20 [19] 5942-44 (2008). https://doi.org/10.1021/cm801626k
- S. J. Kalita, A. Bhardwaj, and H. A. Bhatt, "Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering," Mat. Sci. Eng. C-Bio. S., 27 [3] 441-49 (2007). https://doi.org/10.1016/j.msec.2006.05.018
- J. Wang and L. L. Shaw, "Nanocrystalline Hydroxyapatite with Simultaneous Enhancements in Hardness and Toughness," Biomaterials, 30 [34] 6565-72 (2009). https://doi.org/10.1016/j.biomaterials.2009.08.048
- H. W. Kim, H. E. Kim, and V. Salih, "Stimulation of Osteoblast Responses to Biomimetic Nanocomposites of Gelatin-Hydroxyapatite for Tissue Engineering Scaffolds," Biomaterials, 26 [25] 5221-30 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.047
- M. Sato, M. A. Sambito, A. Aslani, N. M. Kalkhoran, E. B. Slamovich, and T. J. Webster, "Increased Osteoblast Functions on Undoped and Yttrium-Doped Nanocrystalline Hydroxyapatite Coatings on Titanium," Biomaterials, 27 [11] 2358-69 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.041
- Y. L. Hong, H. S. Fan, B. Li, B. Guo, M. Liu, and X. D. Zhang, "Fabrication, Biological Effects, and Medical Applications of Calcium Phosphate Nanoceramics," Mat. Sci. Eng. R., 70 [3-6] 225-42 (2010). https://doi.org/10.1016/j.mser.2010.06.010
- C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug, "Physico-Chemical Properties of Nanocrystalline Apatites: Implications for Biominerals and Biomaterials," Mat. Sci. Eng. C-Bio. S., 27 [2] 198-205 (2007). https://doi.org/10.1016/j.msec.2006.05.015
- C. Jager, T. Welzel, W. Meyer-Zaika, and M. Epple, "A Solid-State NMR Investigation of the Structure of Nanocrystalline Hydroxyapatite," Magn. Reson. Chem., 44 [6] 573-80 (2006). https://doi.org/10.1002/mrc.1774
- Y. Wang, S. Von Euw, F. M. Fernandes, S. Cassaignon, M. Selmane, G. Laurent, G. Pehau-Arnaudet, C. Coelho, L. Bonhomme-Coury, M. M. Giraud-Guille, F. Babonneau, T. Azais, and N. Nassif, "Water-Mediated Structuring of Bone Apatite," Nat. Mater., 12 [12] 1144-53 (2013). https://doi.org/10.1038/nmat3787
- H. N. Wang, Y. B. Li, Y. Zuo, J. H. Li, S. S. Ma, and L. Cheng, "Biocompatibility and Osteogenesis of Biomimetic Nano-Hydroxyapatite/Polyamide Composite Scaffolds for Bone Tissue Engineering," Biomaterials, 28 [22] 3338-48 (2007). https://doi.org/10.1016/j.biomaterials.2007.04.014
- B. Nies, S. Rossler, and A. Reinstorf, "Formation of Nano Hydroxyapatite - A Straightforward Way to Bioactivate Bone Implant Surfaces," Int. J. Mater. Res., 98 [7] 630-36 (2007). https://doi.org/10.3139/146.101510
-
M. H. Hong, D. H. Lee, K. M. Kim, and Y. K. Lee, "Study on Bioactivity and Bonding Strength between Ti Alloy Substrate and
$TiO_2$ Film by Micro-arc Oxidation," Thin Solid Films, 519 [20] 7065-70 (2011). https://doi.org/10.1016/j.tsf.2011.01.223 - L. Li, H. H. Pan, J. H. Tao, X. R. Xu, C. Y. Mao, X. H. Gu, and R. K. Tang, "Repair of Enamel by Using Hydroxyapatite Nanoparticles as the Building Blocks," J. Mater. Chem., 18 [34] 4079-84 (2008). https://doi.org/10.1039/b806090h
- A. Ashokan, D. Menon, S. Nair, and M. Koyakutty, "A Molecular Receptor Targeted, Hydroxyapatite Nanocrystal Based Multi-Modal Contrast Agent," Biomaterials, 31 [9] 2606-16 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.113
- B. Li, B. Guo, H. S. Fan, and X. D. Zhang, "Preparation of Nano-Hydroxyapatite Particles with Different Morphology and their Response to Highly Malignant Melanoma Cells in Vitro," Appl. Surf. Sci., 255 [2] 357-60 (2008). https://doi.org/10.1016/j.apsusc.2008.06.114
- P. Chen, H. L. Dai, Y. C. Han, M. Z. Yin, and S. P. Li, "Effect of Hydroxyapatite Nanoparticles on K562 Cells in Vitro," J. Wuhan Univ. Technol., 23 [2] 222-24 (2008). https://doi.org/10.1007/s11595-006-2222-3
- M. Epple, K. Ganesan, R. Heumann, J. Klesing, A. Kovtun, S. Neumann, and V. Sokolova, "Application of Calcium Phosphate Nanoparticles in Biomedicine," J. Mater. Chem., 20 [1] 18-23 (2010). https://doi.org/10.1039/B910885H
- P. A. Wingert, H. Mizukami, and A. E. Ostafin, "Enhanced Chemiluminescent Resonance Energy Transfer in Hollow Calcium Phosphate Nanoreactors and the Detection of Hydrogen Peroxide," Nanotechnology, 18 [29] 295707 (2007). https://doi.org/10.1088/0957-4484/18/29/295707
- S. Boonrungsiman, E. Gentleman, R. Carzaniga, N. D. Evans, D. W. McComb, A. E. Porter, and M. M. Stevens, "The Role of Intracellular Calcium Phosphate in Osteoblast-Mediated Bone Apatite Formation," P. Natl. Acad. Sci. USA, 109 [35] 14170-75 (2012). https://doi.org/10.1073/pnas.1208916109
- S. V. Dorozhkin, "Calcium Orthophosphates in Nature, Biology and Medicine," Materials, 2 [2] 399-498 (2009). https://doi.org/10.3390/ma2020399