1 차원 나노 세라믹 합성과 응용

  • 최헌진 (연세대학교 신소재공학과) ;
  • 박정민 (연세대학교 신소재공학과)
  • Published : 2016.03.31

Abstract

Keywords

References

  1. G.-C. Yi, "Semiconductor Nanostructures for Optoelectronic Devices," Springer Press.
  2. M. S. Gudiksen, J. Wang, and C. M. Lieber, "Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires," J. Phys. Chem. B, 106 4036 (2002). https://doi.org/10.1021/jp014392n
  3. W. W. Wong, P. E. Sheehan, and C. M.Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes" Science, 277 1971 (1997). https://doi.org/10.1126/science.277.5334.1971
  4. Y. Zhu and W. Lu, "Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires," Nano Lett., 9 [11] 3934-39 (2009). https://doi.org/10.1021/nl902132w
  5. J. Schiotz, F. D. D. Tolla, and K. W. Jacobsen, "Softening of Nanocrystalline Metals at Very Small Grain Sizes," Nature, 391 561 (1998). https://doi.org/10.1038/35328
  6. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices; Cambridge University Press, 2013.
  7. H.-S. P. Wong, "Nanoscale CMOS," IEEE, 87 537-70 (1999). https://doi.org/10.1109/5.752515
  8. Y. Cui et al., "High Performance Silicon Nanowire Field Effect Transistors," Nano Lett., 3 [2] 149-52 (2003). https://doi.org/10.1021/nl025875l
  9. Y. Huang and C. M. Lieber, "Logic Gates and Computation from Assembled Nanowire Building Blocks," Science, 294 1313 (2001). https://doi.org/10.1126/science.1066192
  10. J. Xiang et al., "Ge/Si Nanowire Heterostructures as Highperformance Field-Effect Transistors" Nature, 441 489 (2006). https://doi.org/10.1038/nature04796
  11. B. H. Lee and Y. Choi "Vertically Integrated Multiple Nanowire Field Effect Transistor," Nano lett., 15 [12] 8056-61 (2015). https://doi.org/10.1021/acs.nanolett.5b03460
  12. S. M. Sadaf and Z. Mi "Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes," Nano Lett., 15 [10] 6696-701 (2015). https://doi.org/10.1021/acs.nanolett.5b02515
  13. Y. Zhang and S. R. Forrest, "Tenfold Increase in the Lifetime of Blue Phosphorescent Organic Light-Emitting Diodes," Nat. Commun., 5 5008 (2014). https://doi.org/10.1038/ncomms6008
  14. X. Dai and M. Tchernycheva, "Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires," Nano Lett., 15 [10] 6958-64 (2015). https://doi.org/10.1021/acs.nanolett.5b02900
  15. T. Bozhi and C. M. Lieber, "Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources," Nature, 449 885-89 (2007). https://doi.org/10.1038/nature06181
  16. T. Jinyao and Y. Peidong, "Solution-Processed Core-Shell Nanowires for Efficient Photovoltaic Cells," Nat. Nanotechnol., 6 568-72 (2011). https://doi.org/10.1038/nnano.2011.139
  17. L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit," Phys. Rev. B., 53 10493 (1996). https://doi.org/10.1103/PhysRevB.53.R10493
  18. L. D. Hicks and M. S. Dresselhaus, "Thermoelectric Figure of Merit of a One-dimensional Conductor," Physical Review B, 47 16631 (1993). https://doi.org/10.1103/PhysRevB.47.16631
  19. I. Ryu and W. D. Nix, "Size-Dependent Fracture of Si Nanowire Battery Anodes," J. Mech. Phys. Solids, 59 1717-30 (2011). https://doi.org/10.1016/j.jmps.2011.06.003
  20. C. K. Chan and Yi Cui, "High-Performance Lithium Battery Anodes Using Silicon Nanowires," Nat. Nanotechnol., 3 31-5 (2008). https://doi.org/10.1038/nnano.2007.411
  21. T. Kennedy and K. M. Ryan, "High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network," Nano Lett., 14 [2] 716-23 (2014). https://doi.org/10.1021/nl403979s
  22. M. Ge and C. Zhou, "Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life," Nano Lett., 12 [5] 2318-23 (2012). https://doi.org/10.1021/nl300206e
  23. X. Duan and M. A. Reed, "Quantification of the Affinities and Kinetics of Protein Interactions Using Silicon Nanowire Biosensors," Nat. Nanotechnol., 7 401-7 (2012). https://doi.org/10.1038/nnano.2012.82
  24. C. Michael and R. H. James, "Peptide-Nanowire Hybrid Materials for Selective Sensing of Small Molecules," J. Am. Chem. Soc., 130 [29] 9583-89 (2008). https://doi.org/10.1021/ja802506d
  25. J. Hahm and C. M. Lieber, "Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors," Nano Lett., 4 [1] 51-4 (2004). https://doi.org/10.1021/nl034853b
  26. G. J. Zhang, "Silicon Nanowire Biosensor for Highly Sensitive and Rapid Detection of Dengue Virus," Sens. Actuators, B, 146 [1] 138-44 (2010). https://doi.org/10.1016/j.snb.2010.02.021
  27. Y. R. Na, H. Park, and E. G. Yang, "Probing Enzymatic Activity inside Living Cells Using a Nanowire-Cell "Sandwich" Assay," Nano Lett., 13 [1] 153-58 (2013). https://doi.org/10.1021/nl3037068
  28. H. E. Jeong, H.-J. Choi, and P. Yang "Bacterial Recognition of Silicon Nanowire Arrays," Nano Lett., 13 [6] 2864-69 (2013). https://doi.org/10.1021/nl401205b
  29. Lee et al., "Vertical Nanowire Probes for Intracellular Signaling of Living Cells," Nanoscale Res. Lett., 9 56 (2014). https://doi.org/10.1186/1556-276X-9-56
  30. I. Kim and H.-J. Choi, "Enhanced Neurite Outgrowth by Intracellular Stimulation," Nano Lett., 15 [8] 5414-19 (2015). https://doi.org/10.1021/acs.nanolett.5b01810