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Abstract

The automated part quality inspection poses many challenges to the engineers, especially when the part features to be inspected become
complicated. A large quantity of part inspection at a faster rate should be relied upon computerized, automated inspection methods, which
requires advanced quality control approaches. In this context, this work uses innovative methods in remote part tracking and quality control with
the aid of the modern equipment and application of support vector machine (SVM) learning approach to predict the outcome of the quality
control process. The classifier equations are built on the data obtained from the experiments and analyzed with different kernel functions. From
the analysis, detailed outcome is presented for six different cases. The results indicate the robustness of support vector classification for the
experimental data with two output classes.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is more likely that the rapid advancements in sensor,
computer, communication, and information technologies are
bringing about the fundamental changes in manufacturing
settings. This includes fully-automated, 100% quality inspec-
tion that can process a large amount of measurement data [1–
6]. Other production related activities and business functions
will be also integrated into the company information manage-
ment network, which guarantees the instant access to critical
production data for enhanced decision making [7–9]. This new
approach is referred to as e-quality control, and one of the
enabling tools is the ability to predict the variations and
performance losses during the various production stages. This
means that the traditional quality control scheme, which relies
on sampling techniques, would be replaced by the sensor-
based, automatic, computerized inspection methods that pro-
vide the unprecedented level of data processing and handling.
Since the production equipment is integrated into the network,

the condition of the machines can be monitored, while the
product quality from specific machines can be instantly
identified. In order to test the new quality control approach,
the authors have developed a networked quality control station.
This includes two network-accessible assembly robots, two
networked vision sensors, and other ancillary equipment which
constitutes the cell. The overall setting of the system is
presented in Fig. 1.
The vision sensors see the part and measure the dimensions.

The captured image has 640� 480 pixel size and the analysis
results are produced by the computer algorithms. Part gauging
is established by using a pattern matching technique. For each
part, the vision sensor conducts the pre-defined quality control
tasks, and sends the information to the awaiting robot. If the
part passes the quality standard, it will be picked up by the
robot and dropped into the bin. Otherwise, the bad parts will be
carried away by the conveyor belt. The picture of entire setup
is shown in Fig. 2.
In the context of e-quality control, the objective of this paper

is to apply the machine learning approach in the form of
support vector machines (SVMs) to predict the outcome of the
part classification. Data obtained from the remote inspection
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experiments will be analyzed using SVM classifier equations
to build a model, which can be used for predictions (i.e., good
vs. bad quality). The motivation behind this work is to build
robust classifiers, which can sort the incoming parts based on
the vision-sensor generated dimensional data into the prede-
fined groups in an automated way.

2. Literature review

Data mining, which is also referred to as knowledge
discovery in databases, means a process of nontrivial extraction
of implicit, previously unknown and potentially useful informa-
tion (such as knowledge rules, constraints, regularities) from
data in databases. In modern manufacturing environments, vast
amounts of data are collected into the database management
systems and data warehouses from all involved areas, such as
product and process design, assembly, materials planning and
control, order entry and scheduling, maintenance, recycling, and
so on. Different researchers tried to solve the quality control and
inspection using various machine learning approaches in an
effort to address different types of problems. Automated
diagnosis of sewer pipe defects was done using support vector
machines (SVMs), where the results showed that the diagnosis
accuracy using SVMs was better than that derived by a
Bayesian classifier [10]. A combination of fuzzy logic and
SVMs was used in the form of Fuzzy support vector data
description (F-SVDD) for the automatic target identification for

a TFT-LCD array process, where the experimental results
indicated that the proposed method ensemble outperformed
the commonly used classifiers in terms of target defect
identification rate [11]. Independent component analysis (ICA)
and SVMs were used as a combination for intelligent faults
diagnosis of induction motors, where the results show that the
SVMs achieved high performance in classification using multi-
class strategy, one-against-one and one-against-all [12]. Fault
diagnosis was also done based on the particle swarm optimiza-
tion and support vector machines, where the new method can
select the best fault features in a short time and has a better real-
time capacity than the method based on principal component
analysis(PCA) and SVMs [13]. Multi-class support vector
machines were used for the fault diagnostics of roller bearing
using kernel based neighborhood score multi-class support
vector machine, where it was shown the multi-class SVM was
effective in diagnosing the fault conditions and the results were
comparable with binary SVM [14]. Artificial neural networks
were used for addressing quality control issue as a non-
conventional way to detect surface faults in mechanical front
seals, which achieved good results in comparison with the
deterministic system which was already implemented [15].
Fuzzy association rules were used to develop an intelligent
quality management approach with the research providing a
generic methodology with knowledge discovery and the coop-
erative ability for monitoring the process effectively and
efficiently [16]. An automatic optical inspection was adopted
for on-line measurement of small components on the eyeglasses
assembly line, which was designed to be used at the beginning
of the assembly line and is based on artificial vision, exploits
two CCD cameras and an anthropomorphic robot to inspect and
manipulate the objects [17].
In fact, the very insightful resources are abounded in terms of

fuzzy learning with kernels and SVMs. One example includes
the learning of one-class SVM, which requires non-labeled data
[18,19]. Other studies also utilized the method of non-labeled
data, hence being able to operate in a fully unsupervised manner
[20,21]. Fuzzy analytical hierarchy process was used to select
unstable slicing machines to control wafer slicing quality, where
the results of exponentially weighted moving average control
chart demonstrated the feasibility of the proposed algorithm in
effectively selecting the evaluation outcomes and evaluating the
precision of the worst performing machines [22]. Logistic
Regression and PCA were the data mining algorithms used
for monitoring PCB assembly quality, where the results
demonstrated that the statistical interpretation of solder defect
distributions can be enhanced by the intuitive pattern visualiza-
tion for process fault identification and variation reduction [23].
Fuzzy logic was used for the fault detection in statistical process
control of industrial processes and the comparative rule-based
study has shown that the developed fuzzy expert system is
superior to the preceding fuzzy rule-based algorithm [24].
SVMs were used for an intelligent real-time vision system for
surface defect detection, where the proposed system was found
to be effective in detecting the steel surface defects based on the
experimental results generated from over one thousand images
[25]. SVMs were also used as a part of the optical inspection
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Fig. 1. Overall schematic of the proposed e-quality control system.

Fig. 2. Networked robotic setup at ISEL lab, UTEP.
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system for the solder balls of ball grid array, where the system
also gives the training model adjustment judgment core SVM
which is efficient for the image comparison and classification
[26]. SVMs were used for quality monitoring in robotized arc
welding, where the results show that the method can be feasible
to identify the defects online in welding production [27]. A
defect classification algorithm for the rolling system surface
inspection was developed using Neural Networks and SVMs
with good classification ability and generalization performance
[28]. SVMs along with the wavelet feature extraction based on
vector quantization and SVD techniques were used for
improved defect detection with the results outlining the impor-
tance of judicious selection and processing of 2D DWT wavelet
coefficients for industrial pattern recognition applications as well
as the generalization performance benefits obtained by involving
SVM neural networks instead of other ANN models [29].
Radial basis function (RBF) neural networks (NNS) and SVMs
were used for quality monitoring in a plastic injection molding
process, where the experimental results obtained thus far
indicate improved generalization with the large margin classifier
as well as better performance enhancing the strength and
efficacy of the chosen model for the practical case study [30].
Two very different studies involve the surface inspection
applications, where different approaches can be used within
the similar domains of quality inspection [31,32]. Table 1
summarizes the applications listed in the manuscript.

Although significant amount of literature is published on solving
quality related issues using data mining techniques or support vector
machines in particular, the concept of addressing e-quality using
SVMs remains unexplored. This is due to the fact that the whole

idea of e-quality is still in its developmental stages. However, some
researchers developed the idea to address e-quality for manufactur-
ing within the framework of internet-based systems. The researchers
designed the setup to perform quality control operations over the
Internet using Yamaha robots and machine vision cameras. The
present work is an extension to this type of work, where the data
obtained from these experiments is analyzed using SVMs for
predictions. The idea behind using SVMs for this work is solely
based on the fact that the performance of SVMs on binary output
data is better, when compared to other widely used approaches like
the neural networks, principal component analysis and independent
component analysis. Most literatures support that SVMs outper-
formed better than other methods in many quality applications. Note
that the objective of this paper is to focus on determining a better
classification model, based on the tuning of the parameters among
different SVM kernels.

3. Methodology

This section explains the model selection for running the
experiments using the support vector classifiers, the values of
training parameters selected, and the values of parameters used
for different kernel functions. Fig. 3 shows the conceptual
framework used as a part of this work.

3.1. Model selection

In training SVMs, we need to select a kernel and set a value
to the margin parameter C. To develop the optimal classifier,

Table 1
Support vector machines applications.

Applications Approach Researchers

Automated diagnosis Support vector machines(SVMs) Yang and Su 2008 [10]
Automatic target defect identification Fuzzy support vector data description (F-SVDD) Liu et al. 2009 [11]
Intelligent faults diagnosis Independent component analysis (ICA) and support vector machines (SVMs) Widodo et al. 2007 [12]
Fault diagnostics Support vector machine Yuan and Chu 2007 [13]
Fault diagnostics Multi-class support vector machine (MSVM) Sugumaran et al. 2008 [14]
Surface faults detection Artificial neural networks Barelli et al. 2008 [15]
Intelligent quality management Fuzzy association rules Lau et al. 2009 [16]
On-line dimensional measurement Automatic optical inspection Rosati et al. 2009 [17]
Optimization Learning with Kernels Schölkopf and Smola 2002 [18]
Machine learning One class SVM for classification Manevitz and Yousef 2001 [19]
Fault detection Residual based fuzzy logic Serdio et al. 2014 [20]
Fault detection Multivariate time series modeling Serdio et al. 2014 [21]
Quality control Fuzzy analytical hierarchy process Chang et al. 2008 [22]
Quality control Logistic Regression, principal component analysis (PCA) Zhang and Luk 2007 [23]
Fault detection Fuzzy logic El-Shal and Morris 2000 [24]
Surface defect detection Support vector machine Jia et al. 2004 [25]
Optical inspection Support vector machine Chen 2007 [26]
Quality monitoring Support vector machine Huang and Chen 2006 [27]
Surface inspection Neural network, support vector machine Choi et al. 2006 [28]
Defect detection Support vector machine Karras 2003 [29]
Quality monitoring Radial basis function (RBF) neural networks (NNS), support vector machines (SVMs) Ribeiro 2005 [30]
Surface inspection SVMs, decision trees with CART and C4.5, fuzzy classifiers, K-NN, neural classifiers, etc. Eitzinger et al. 2010 [31]
Surface inspection Decision tree Heidi et al. 2013 [32]
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we need to determine the optimal kernel parameter and the
optimal value of C. A k-fold (a value of k¼10) cross
validation approach is adopted for estimating the value of
training parameter. The minimum value considered was 0.1
and the maximum value was 500. The value of C with the high
level training accuracy percentage was identified as the optimal
value (highlighted in bold characters). The performance of the
classifiers is evaluated by using different kernel functions in
terms of testing accuracy, training accuracy, a number of
support vectors, and validation accuracy. Four different kernel
functions are identified for this research based on the knowl-
edge gained from the literature review. They include (1) Linear
Kernel, (2) Polynomial Kernel, (3) Radial Basis Function
(RBF) Kernel, and (4) Sigmoid Kernel. Polynomial and RBF
kernels are by far the most commonly used kernels in the
research world. The following section identifies the different
parameters involved in all kernels, and also discusses the range
for each parameter.

3.1.1. Linear Kernel

k xi; xj
� �¼ xi ; xj ð1Þ
It is the inner product of xi ; xj, so there is no gamma and

no bias.

3.1.2. Polynomial Kernel

k xi; xj
� �¼ ðγxi xj þcoefficientÞdegree ð2Þ
where ðdegreeA ℕ; coefficient Z0; γ 40 Þ

Two cases are designed based on this kernel, which include
the degrees of 2 and 3. Gamma as 2, coefficient as 1, are
chosen based on the data. Trial and error method was adopted

to find the optimal values, which gives high testing data
classification accuracy.

3.1.3. Radial Basis Function (RBF) Kernel

k xi; xj
� �¼ exp �γjxi�xjj2

� � ð3Þ
where ðγ 40Þ.
Two cases are also designed based on this kernel with

gamma values of 0.5 and 2. Trial and error method was
adopted to find the optimal values, which gives high testing
data classification accuracy.

3.1.4. Sigmoid Kernel

k xi; xj
� �¼ tan h γxi xj þcoefficient

� � ð4Þ
where ðγ 40; coefficient Z0Þ.
Values of gamma 0.2 and coefficient 0.1 were chosen for

this work based on the data.

3.2. Training the Support Vector Classifiers

After the acquisition of the data from the experiments, the
following characteristics were identified. Total number of
cases¼138 (note: a total number of times that the experiment
ran. It includes ‘auto’ and ‘manual’ modes.). Number of input
features¼5 (note: five features include the five different
dimensions of the test piece.). Number of output features¼2
(note: two outputs include the cases where the test piece is
‘compliant’ or ‘non-compliant.). As SVMs are a part of the
supervised learning methods, the data are divided into the
training set and testing set. Going with the standard approach,
two-thirds of the data are divided into the training set and the
remaining one thirds into a testing set. Accordingly, it has been
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Fig. 3. Conceptual framework.
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set as the training data sample size of 92, and the testing data
sample size of 46. According to the literature review, in
obtaining the support vectors, one needs to solve the equation:

maximizeαAℝm W αð Þ ¼
Xm

i ¼ 1

αi�1=2
Xm

i;j ¼ 1

αiαjyiyjkðxi; xjÞ

ð5Þ
subject to the constraints

0rαirC for all i¼ 1;…:;m; and
Xm

i ¼ 1

αiyi ¼ o ð6Þ

Accordingly, one has to estimate the value of the training
parameter C. After closely following the literature and going
through the published materials, it is decided that the k-fold
cross validation method is used to estimate the value of
training parameter C.

4. Results and comparisons

In this section, the various steps involved in the process of
conducting experiments are presented. The results generated
from using the classifiers in six different cases are also shown
in the form of tables. In addition, the comparison between the
performances of different kernel functions on the given data is
made and the findings are reported.

4.1. Preparing test samples

The experimental setup considered for this research is in the
development stage and as of now it cannot be completely
commercialized and used for real-world problems. Due to this
reason, a similar scenario is designed, which depicts the real
world cases. Instead of parts dealt in a typical production line,
small test pieces are designed to conduct the experiment. These
pieces are smaller in size, less complicated in dimensions and
shapes when compared to the parts used in various types of
industries. Fig. 4 shows the geometry of the test piece used in the

experiment, indicating that L: length of the piece; W: width of the
piece; D1 and D2: diameters of two circles; and CCL: distance
between the circle centers. There are about 20 pieces made. Each
differs from the original in at least one dimension, in order to
depict that there are defective products in the production line.

4.2. Performing the inspection process

The experiment includes recording real-time measurements on
sample work pieces (products) that are passed around on a
conveyor belt, compare these dimensions to the required speci-
fications, make a decision on the quality of the product (i.e. if it is
compliant or non-compliant), and take an appropriate action on
the product. We used a Cognex DVT 540 vision sensor for
making inspections and measurements on the object under test.
We have set the camera to have an image resolution of 640� 480
bits with an exposure time of 4 ms and a frequency of 2
snapshots per second. The camera is initially trained to learn
the profile of the object being tested and make the required
measurements on it. Once trained, it can detect the presence of the
same kind of object under different orientations. The camera can
be addressed using an IP address and is capable of exchanging
information with other entities over a data network. Subsequently,
during inspections, the camera makes measurements on the
objects passing on the conveyor belt and reports it back along
with the objects' position to an application server over the
network. The application is software written in VB6 and runs
in a PC. It communicates with the camera over the network and
receives the measurement and position information about the
object. It then uses this information to decide whether the product
adheres to the required specifications. Once a decision is made, it
communicates with the robot over the network, and instructs it to
it stop the belt and do the proper pick and place operation on the
object. The robot places the compliant and non-compliant objects
on to two different stacks. The camera placed at the inspection
site also allows for visual monitoring of the ongoing process from
a remote location. Table 2 summarizes the specifications for the
different type of work pieces used for the experiment. Type 1
constitutes objects that adhere to the required specifications. The
other types deviate from these specifications in one dimension.

4.3. Data acquisition

Based on the previous phase, the experiment is conducted
allowing the user to test the different samples. The user has

CCL

W

D1

D2

L

Fig. 4. Test Piece Geometry.

Table 2
Work piece specifications (units: mm).

Type L W D1 D2 CCL Remarks

1 50 50 12 12 37 Correct dimensions
2 52 50 12 12 37 Wrong length
3 50 52 12 12 37 Wrong width
4 50 50 14 12 37 Wrong radius
5 50 50 12 14 37 Wrong radius
6 50 50 12 12 39 Wrong center – center horizontal distance
7 50 50 12 12 39 Wrong center – center vertical distance
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two options to perform this type of experiment, which includes
dealing with the robot in manual and auto modes. The data
used for this experiment consists of data recorded in two
modes. (1) Manual mode: after the test piece is placed on the
conveyor system, it stops as soon as it comes right below the
DVT vision sensor, which records the dimensions. Through a
VB interface, the user is able to see the values and has to make
a judgment whether the test piece is compliant or non-
compliant. After the user takes a decision the robot is
programmed to pick up the object and place it in the respective
stack. The process continues until all test samples are put on
the conveyor. The significance of this mode lies on the users'
ability to make the correct decision to classify the object. (2)
Auto mode: the process is almost similar to the manual mode
except after the dimensions are recorded by the DVT vision
sensor camera, the application itself takes the decision,
whether the piece is compliant or non-compliant. The VB
application has the option to write all the data recorded along
with the action taken into an excel file. Most analysis part is
done using a statistics software package, called STATISTICA,
which provides a selection of data analysis, data management,
data mining, and data visualization procedures. Fig. 5 shows
the screen shot of the input data used for the analysis in the
STATISTICA 8.0 data mining module.

4.4. Case studies

Results obtained from six different cases are presented in
this section. All cases vary in the type of kernel functions used
for classification. The cases include: Case 1. Radial Basis
Function Kernel (gamma¼0.5); Case 2. Radial Basis Function
Kernel (gamma¼2.0); Case 3. Polynomial Kernel (degree¼2,
gamma¼2, coefficient¼1); Case 4. Polynomial Kernel
(degree¼3, gamma¼2, coefficient¼1); Case 5. Linear Ker-
nel; and Case 6. Sigmoid Kernel (gamma¼0.2,
coefficient¼0.1).

4.4.1. Case 1. Radial Basis Function Kernel (gamma¼0.5)
The classifier equations are tested with the radial basis

function kernel using a gamma value of 0.5 and different runs
are made using different values of the training parameter. For
each run, a number of support vectors generated, while the
accuracy of classifying the data in the training and testing sets
are noted. The summary is presented in Table 3.
Values from the table are plotted in the form of a graph

shown in Fig. 6 with training parameter values on the X-axis
and accuracy percentages on the Y-axis. Optimal cross valida-
tion value is found and highlighted in the graph.

Fig. 5. Screen shot of the STATISTICA 8.0 interface.
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4.4.2. Case 2. Radial Basis Function Kernel (gamma¼2.0)
The classifier equations are tested with the radial basis

function kernel using a gamma value of 2 and different runs
are made using different values of the training parameter. For
each run, a number of support vectors generated the accuracy
of classifying the data in the training and testing sets are noted.
The summary is presented in Table 4.

The values from the table are plotted in the form of a graph
shown in Fig. 7 using Statistica with training parameter values
on the X-axis and accuracy percentages on the Y-axis. Optimal
cross validation value is found and highlighted in the graph.

4.4.3. Case 3. Polynomial Kernel (degree¼2, gamma¼2,
coefficient¼1)

The classifier equations are tested with the polynomial
kernel and different runs are made using different values of
the training parameter. For each run, a number of support
vectors are generated, and the accuracy of classifying the data

in the training and testing sets are noted. The summary of all
these observations is presented in Table 5.
The values from the table are plotted in the form of a graph

shown in Fig. 8 using Statistica with training parameter values
on the X-axis and the accuracy percentages on the Y-axis.
Optimal cross validation value is found and highlighted in
the graph.

4.4.4. Case 4. Polynomial Kernel (degree¼3, gamma¼2,
coefficient¼1)
The classifier equations are tested with the Polynomial

Kernel and different runs are made using different values of
the training parameter. For each run, a number of support
vectors generated, and the accuracy of classifying the data in
the training set and testing set are noted. The summary of all
these observations is presented in Table 6.
The values from the table are plotted in the form of a graph

shown in Fig. 9 using Statistica with training parameter values
on the X-axis and the accuracy percentages on the Y-axis.

Table 3
Summary table for Case 1.

Training
parameter ‘C’

Number of support
vectors

Training
accuracy (%)

Testing
accuracy (%)

0.1 72 72 72
1 39 90 89
2 31 92 87
10 22 93 87
20 22 93 89
40 21 98 89
60 19 99 89
80 20 99 93
100 19 99 93
165 16 99 93
200 17 99 93
300 10 99 91
400 10 99 91
500 10 99 91
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Fig. 6. Graph showing different ‘C’ values plotted against accuracy levels.

Table 4
Summary table for Case 2.

Training
parameter ‘C’

Number of support
vectors

Training
accuracy (%)

Testing
accuracy (%)

0.1 61 89 87
1 29 91 89
2 24 95 89
10 21 97 89
20 20 99 91
40 16 99 91
60 15 99 91
80 12 99 91
100 12 99 91
200 13 99 91
300 13 99 91
376 13 99 93
400 13 99 93
500 13 99 93
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0.1 1 2 10 20 40 60 80 100 200 300 376 400 500
Training Parameter 'C'

86

88

90

92

94

96

98

100
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y

 Training
 Testing

Optimal Cross Validation Value Results

Fig. 7. Graph showing different ‘C’ values plotted against accuracy levels.
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Optimal cross validation value is found and highlighted in
the graph.

4.4.5. Case 5. Linear Kernel
The classifier equations are tested with Linear Kernel and

different runs are made using different values of the training
parameter. For each run, a number of support vectors are
generated, and the accuracy of classifying the data in the
training set and testing set are noted. The summary of all these
observations are presented in Table 7.

The values from the table are plotted in the form of a graph
shown in Fig. 10. Optimal cross validation value is found and
highlighted in the graph.

4.4.6. Case 6. Sigmoid Kernel (gamma¼0.2, coefficient¼0.1)
The classifier equations are tested with the Sigmoid Kernel

and different runs are made using different values of the
training parameter. For each run, a number of support vectors
are generated, and the accuracy of classifying the data in the
training set and testing set are noted. The summary is
presented in Table 8.

The values from the table are plotted in the form of a graph
shown in Fig. 11. Optimal cross validation value is found and
highlighted in the graph.

Table 5
Summary table for Case 3.

Training
parameter ‘C’

Number of support
vectors

Training
accuracy (%)

Testing
accuracy (%)

0.1 28 93 85
1 19 93 87
2 17 97 89
6 14 99 93
10 14 99 93
20 13 99 91
40 11 99 91
60 12 99 91
80 12 99 91
100 11 99 91
200 10 99 91
300 11 100 89
400 9 100 91
500 11 100 89

Training Parameter 'C' vs Classification Accuracy
Polynomial Kernel (degree =2,gamma = 2,coeff = 1)
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Fig. 8. Graph showing different ‘C’ values plotted against accuracy levels.

Table 6
Summary table for Case 4.

Training
parameter ‘C’

Number of support
vectors

Training
accuracy (%)

Testing
accuracy (%)

0.1 20 93 87
1 13 99 91
2 12 99 91
10 8 99 91
20 9 99 91
40 8 100 89
60 8 100 85
80 8 100 85
100 8 100 85
200 8 100 85
300 8 100 85
400 8 100 85
500 8 100 85

Training Parameter 'C' vs Classification Accuracy
Polynomial Kernel (degree = 3,gamma = 2,coeff = 1)
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Fig. 9. Graph showing different ‘C’ values plotted against accuracy levels.

Table 7
Summary table for Case 5.

Training
parameter ‘C’

Number of support
vectors

Training
accuracy (%)

Testing
accuracy (%)

0.1 73 78 76
1 39 93 85
2 30 93 85
10 22 93 85
20 20 93 85
40 20 93 87
60 18 93 85
80 17 93 87
100 16 93 87
200 16 96 93
300 15 96 93
400 15 96 93
476 18 97 93
500 19 96 93
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4.5. Comparison

This section compares the results obtained from the different
cases. After executing the model with different kernel func-
tions, the results that a specific kernel gives the best accuracy
are identified and used for comparison along with other
kernels. Table 9 summarizes the finding.

Additionally, to show the advantage of the SVMs, two other
methods that are commonly used have been tested. The results
are shown in Table 10.

5. Conclusions

This section presents the important findings that can be drawn
from the analyses. The purpose of this research was to develop a
support vector classifier model based on the experimental data

in order to facilitate the process of e-quality control. The study
was conducted under the following assumptions. (1) The data
used for analysis contained 138 different cases, which were
obtained by running the experiment with different test samples.
(2) The model selection for training parameter C was based on
the v-fold cross validation approach. (3) The range of training
parameter C values included 0.01 to 500, where much higher
values in the order of four digits and five digits can also be used
based on the characteristics of data. (4) The parameters of the
kernel functions were assumed based on the trial and error, to
obtain the best accuracy level. After analyzing the data obtained
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Fig. 10. Graph showing different ‘C’ values plotted against accuracy levels.

Table 8
Summary table for Case 6.

Training
parameter ‘C’

Number of support
vectors

Training
accuracy (%)

Testing
accuracy (%)

0.1 72 61 67
1 72 86 80
2 58 86 80
10 35 93 85
16 30 93 85
20 28 93 85
40 24 93 85
60 24 93 85
80 22 93 85
100 22 93 85
200 18 92 85
300 17 92 85
400 17 92 85
500 16 92 85

Training Parameter 'C' vs Classification Accuracy
Sigmoid Kernel (gamma = 0.2, coeff = 0.1)
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Fig. 11. Graph showing different ‘C’ values plotted against accuracy levels.

Table 9
Summary of experiments.

Kernel Training
parameter ‘C’

Train rate
(%)

Test rate
(%)

SVs

Linear 476 97 93 18(7a)
Polynomial (degree
¼2)

6 99 93 14(8a)

Polynomial (degree
¼3)

1 99 91 13(6a)

RBF (gamma¼0.5) 165 99 93 16(6a)
RBF (gamma¼2) 376 99 93 13(1a)
Sigmoid (gamma¼0.2,
coef¼0.1)

16 93 85 30(25a)

aBounded support vectors.

Table 10
Comparison between decision tree and logistics regression methods.

Methods Train rate (%) Test rate (%)

Decision tree 97 87
Logistic regression 78 83
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using SVM classifiers and testing the accuracy levels using
different kernels, the following conclusions can be drawn. Since
the SVMs produced good classification results for data with
binary outcome, the results achieved for this data were
significant. The highest testing rate of 93% was achieved, when
using Linear, Polynomial and RBF kernels in different cases.
Polynomial kernel of second degree and RBF kernel with
gamma values had slightly higher training rate values. Among
all cases, the RBF kernel with a gamma value of 2 is identified
as the best performer, as it has the lowest number of support
vectors used in the classification method. Heuristically, a less
number of support vectors signifies the robustness of the
classifier. However, this might not be true in all cases, since it
also depends on the number of bounded support vectors, which
are located between the margins. The value of the training
parameter ‘C’ identified as 376 for the RBF kernel also satisfies
the basic necessity for selecting the ideal training parameter. If
‘C’ is too small, the insufficient stress will be placed on fitting
the training data. If it is too large, the algorithm leads to over
fitting the data. As to the data size, even though the available
data are not large, it is adequate for the research. It may have a
better result (i.e., a better predict accuracy) with the larger data
sets. Basically, there are also problems in dealing with the big
data, such as over fitting and outliers. Moreover, the proposed
model may be insensitive only given by certain data sets. In
other words, different data sets may lead various “optimal”
models. Consequently, it is suggested that pre-processing effort
could focus on eliminating bias, particularly pre-existing pattern
data prior the use of SVM classification. One of the future
works could dedicate to develop a better model, which may be
hybrid in nature through combining different approaches (i.e.,
SVM and non-SVM) and/or fusing different kernel functions
under feasible conditions. Another future work might be to
realize the equality in the dynamic environments. The new
algorithm will be affected by the dynamic data, when setting the
parameters automatically to optimize the models.
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