DOI QR코드

DOI QR Code

Rhinovirus and childhood asthma: an update

  • Song, Dae Jin (Department of Pediatrics, Korea University College of Medicine)
  • 투고 : 2015.08.25
  • 심사 : 2015.10.23
  • 발행 : 2016.11.15

초록

Asthma is recognized as a complex disease resulting from interactions between multiple genetic and environmental factors. Accumulating evidence suggests that respiratory viral infections in early life constitute a major environmental risk factor for the development of childhood asthma. Respiratory viral infections have also been recognized as the most common cause of asthma exacerbation. The advent of molecular diagnostics to detect respiratory viruses has provided new insights into the role of human rhinovirus (HRV) infections in the pathogenesis of asthma. However, it is still unclear whether HRV infections cause asthma or if wheezing with HRV infection is simply a predictor of childhood asthma. Recent clinical and experimental studies have identified plausible pathways by which HRV infection could cause asthma, particularly in a susceptible host, and exacerbate disease. Airway epithelial cells, the primary site of infection and replication of HRV, play a key role in these processes. Details regarding the role of genetic factors, including ORMDL3, are beginning to emerge. This review discusses recent clinical and experimental evidence for the role of HRV infection in the development and exacerbation of childhood asthma and the potential underlying mechanisms that have been proposed.

키워드

참고문헌

  1. Duijts L. Fetal and infant origins of asthma. Eur J Epidemiol 2012; 27:5-14. https://doi.org/10.1007/s10654-012-9657-y
  2. Le Souef PN. Gene-environmental interaction in the development of atopic asthma: new developments. Curr Opin Allergy Clin Immunol 2009;9:123-7. https://doi.org/10.1097/ACI.0b013e3283292283
  3. von Mutius E. Environmental factors influencing the development and progression of pediatric asthma. J Allergy Clin Immunol 2002; 109(6 Suppl):S525-32. https://doi.org/10.1067/mai.2002.124565
  4. Stein RT, Sherrill D, Morgan WJ, Holberg CJ, Halonen M, Taussig LM, et al. Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet 1999;354:541-5. https://doi.org/10.1016/S0140-6736(98)10321-5
  5. Henderson J, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, Thomas HM. Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr Allergy Immunol 2005;16:386-92. https://doi.org/10.1111/j.1399-3038.2005.00298.x
  6. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 2008;178:667-72. https://doi.org/10.1164/rccm.200802-309OC
  7. Gern JE, Busse WW. Relationship of viral infections to wheezing illnesses and asthma. Nat Rev Immunol 2002;2:132-8. https://doi.org/10.1038/nri725
  8. Koponen P, Helminen M, Paassilta M, Luukkaala T, Korppi M. Preschool asthma after bronchiolitis in infancy. Eur Respir J 2012;39:76-80. https://doi.org/10.1183/09031936.00040211
  9. Caliskan M, Bochkov YA, Kreiner-Moller E, Bonnelykke K, Stein MM, Du G, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 2013;368:1398-407. https://doi.org/10.1056/NEJMoa1211592
  10. Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 2009;324:55-9. https://doi.org/10.1126/science.1165557
  11. Bochkov YA, Palmenberg AC, Lee WM, Rathe JA, Amineva SP, Sun X, et al. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 2011;17: 627-32. https://doi.org/10.1038/nm.2358
  12. Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, et al. The major human rhinovirus receptor is ICAM-1. Cell 1989;56: 839-47. https://doi.org/10.1016/0092-8674(89)90688-0
  13. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989;56:849-53. https://doi.org/10.1016/0092-8674(89)90689-2
  14. Dreschers S, Dumitru CA, Adams C, Gulbins E. The cold case: are rhinoviruses perfectly adapted pathogens? Cell Mol Life Sci 2007; 64:181-91. https://doi.org/10.1007/s00018-006-6266-5
  15. Slater L, Bartlett NW, Haas JJ, Zhu J, Message SD, Walton RP, et al. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010;6: e1001178. https://doi.org/10.1371/journal.ppat.1001178
  16. Wang Q, Nagarkar DR, Bowman ER, Schneider D, Gosangi B, Lei J, et al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol 2009;183:6989-97. https://doi.org/10.4049/jimmunol.0901386
  17. Triantafilou K, Vakakis E, Richer EA, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011; 2:22-9. https://doi.org/10.4161/viru.2.1.13807
  18. Khaitov MR. Acute respiratory viral infections and bronchial asthma. Cellular and molecular aspects of the problem. Zh Mikrobiol Epidemiol Immunobiol 2002;(4):84-93.
  19. Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2010;3:69-80. https://doi.org/10.1038/mi.2009.109
  20. Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008;178:962-8. https://doi.org/10.1164/rccm.200805-670OC
  21. Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 2008;4:e1000017. https://doi.org/10.1371/journal.ppat.1000017
  22. Dick EC. Experimental infections of chimpanzees with human rhinovirus types 14 and 43. Proc Soc Exp Biol Med 1968;127:1079-81. https://doi.org/10.3181/00379727-127-32875
  23. Pinto CA, Haff RF. Experimental infection of gibbons with rhinovirus. Nature 1969;224:1310-1. https://doi.org/10.1038/2241310a0
  24. Tuthill TJ, Papadopoulos NG, Jourdan P, Challinor LJ, Sharp NA, Plumpton C, et al. Mouse respiratory epithelial cells support efficient replication of human rhinovirus. J Gen Virol 2003;84(Pt 10):2829-36. https://doi.org/10.1099/vir.0.19109-0
  25. Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G, Zhu J, et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 2008;14: 199-204. https://doi.org/10.1038/nm1713
  26. Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J 2014;44:1682-96. https://doi.org/10.1183/09031936.00084114
  27. Jackson DJ, Lemanske RF Jr. The role of respiratory virus infections in childhood asthma inception. Immunol Allergy Clin North Am 2010;30:513-22. https://doi.org/10.1016/j.iac.2010.08.004
  28. Kotaniemi-Syrjanen A, Vainionpaa R, Reijonen TM, Waris M, Korhonen K, Korppi M. Rhinovirus-induced wheezing in infancy: the first sign of childhood asthma? J Allergy Clin Immunol 2003;111:66-71. https://doi.org/10.1067/mai.2003.33
  29. Lemanske RF Jr. The childhood origins of asthma (COAST) study. Pediatr Allergy Immunol 2002;13 Suppl 15:38-43. https://doi.org/10.1034/j.1399-3038.13.s.15.8.x
  30. Lemanske RF Jr, Jackson DJ, Gangnon RE, Evans MD, Li Z, Shult PA, et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol 2005;116:571-7. https://doi.org/10.1016/j.jaci.2005.06.024
  31. Kusel MM, de Klerk NH, Kebadze T, Vohma V, Holt PG, Johnston SL, et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J Allergy Clin Immunol 2007;119:1105-10. https://doi.org/10.1016/j.jaci.2006.12.669
  32. Midulla F, Pierangeli A, Cangiano G, Bonci E, Salvadei S, Scagnolari C, et al. Rhinovirus bronchiolitis and recurrent wheezing: 1-year follow-up. Eur Respir J 2012;39:396-402. https://doi.org/10.1183/09031936.00188210
  33. Hyvarinen MK, Kotaniemi-Syrjanen A, Reijonen TM, Korhonen K, Korppi MO. Teenage asthma after severe early childhood wheezing: an 11-year prospective follow-up. Pediatr Pulmonol 2005; 40:316-23. https://doi.org/10.1002/ppul.20273
  34. Kieninger E, Fuchs O, Latzin P, Frey U, Regamey N. Rhinovirus infections in infancy and early childhood. Eur Respir J 2013;41: 443-52. https://doi.org/10.1183/09031936.00203511
  35. Akhabir L, Sandford AJ. Genome-wide association studies for discovery of genes involved in asthma. Respirology 2011;16:396-406. https://doi.org/10.1111/j.1440-1843.2011.01939.x
  36. Kang MJ, Yu HS, Seo JH, Kim HY, Jung YH, Kim YJ, et al. GSDMB/ORMDL3 variants contribute to asthma susceptibility and eosinophil-mediated bronchial hyperresponsiveness. Hum Immunol 2012;73:954-9. https://doi.org/10.1016/j.humimm.2012.06.009
  37. Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci U S A 2009;106:10775-80. https://doi.org/10.1073/pnas.0902295106
  38. Miller M, Tam AB, Cho JY, Doherty TA, Pham A, Khorram N, et al. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 2012;109:16648-53. https://doi.org/10.1073/pnas.1204151109
  39. Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R, et al. Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med 2013;5:186ra67.
  40. Choi UY, Kang JS, Hwang YS, Kim YJ. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 2015;47:e144. https://doi.org/10.1038/emm.2014.110
  41. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 2014;46:51-5. https://doi.org/10.1038/ng.2830
  42. Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 2015;112:5485-90. https://doi.org/10.1073/pnas.1421178112
  43. Cox DW, Bizzintino J, Ferrari G, Khoo SK, Zhang G, Whelan S, et al. Human rhinovirus species C infection in young children with acute wheeze is associated with increased acute respiratory hospital admissions. Am J Respir Crit Care Med 2013;188:1358-64. https://doi.org/10.1164/rccm.201303-0498OC
  44. Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Pappas TE, Lee WM, et al. Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life. Am J Respir Crit Care Med 2012;185:281-5. https://doi.org/10.1164/rccm.201104-0660OC
  45. Jackson DJ. The role of rhinovirus infections in the development of early childhood asthma. Curr Opin Allergy Clin Immunol 2010; 10:133-8. https://doi.org/10.1097/ACI.0b013e3283352f7c
  46. Jartti T, Kuusipalo H, Vuorinen T, Soderlund-Venermo M, Allander T, Waris M, et al. Allergic sensitization is associated with rhinovirus-, but not other virus-, induced wheezing in children. Pediatr Allergy Immunol 2010;21:1008-14. https://doi.org/10.1111/j.1399-3038.2010.01059.x
  47. Bianco A, Sethi SK, Allen JT, Knight RA, Spiteri MA. Th2 cytokines exert a dominant influence on epithelial cell expression of the major group human rhinovirus receptor, ICAM-1. Eur Respir J 1998;12:619-26. https://doi.org/10.1183/09031936.98.12030619
  48. Winther B, Arruda E, Witek TJ, Marlin SD, Tsianco MM, Innes DJ, et al. Expression of ICAM-1 in nasal epithelium and levels of soluble ICAM-1 in nasal lavage fluid during human experimental rhinovirus infection. Arch Otolaryngol Head Neck Surg 2002;128: 131-6. https://doi.org/10.1001/archotol.128.2.131
  49. Xatzipsalti M, Psarros F, Konstantinou G, Gaga M, Gourgiotis D, Saxoni-Papageorgiou P, et al. Modulation of the epithelial inflammatory response to rhinovirus in an atopic environment. Clin Exp Allergy 2008;38:466-72. https://doi.org/10.1111/j.1365-2222.2007.02906.x
  50. Gill MA, Bajwa G, George TA, Dong CC, Dougherty II, Jiang N, et al. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol 2010;184:5999-6006. https://doi.org/10.4049/jimmunol.0901194
  51. Gern JE. The ABCs of rhinoviruses, wheezing, and asthma. J Virol 2010;84:7418-26. https://doi.org/10.1128/JVI.02290-09
  52. Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010;376: 826-34. https://doi.org/10.1016/S0140-6736(10)61380-3
  53. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ 1995;310: 1225-9. https://doi.org/10.1136/bmj.310.6989.1225
  54. Heymann PW, Carper HT, Murphy DD, Platts-Mills TA, Patrie J, McLaughlin AP, et al. Viral infections in relation to age, atopy, and season of admission among children hospitalized for wheezing. J Allergy Clin Immunol 2004;114:239-47. https://doi.org/10.1016/j.jaci.2004.04.006
  55. Johnston NW, Johnston SL, Norman GR, Dai J, Sears MR. The September epidemic of asthma hospitalization: school children as disease vectors. J Allergy Clin Immunol 2006;117:557-62. https://doi.org/10.1016/j.jaci.2005.11.034
  56. Mallia P, Johnston SL. How viral infections cause exacerbation of airway diseases. Chest 2006;130:1203-10. https://doi.org/10.1378/chest.130.4.1203
  57. Kling S, Donninger H, Williams Z, Vermeulen J, Weinberg E, Latiff K, et al. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy 2005;35:672-8. https://doi.org/10.1111/j.1365-2222.2005.02244.x
  58. Proud D, Chow CW. Role of viral infections in asthma and chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2006;35: 513-8. https://doi.org/10.1165/rcmb.2006-0199TR
  59. Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 2010;125:1178-87. https://doi.org/10.1016/j.jaci.2010.04.021
  60. Khetsuriani N, Kazerouni NN, Erdman DD, Lu X, Redd SC, Anderson LJ, et al. Prevalence of viral respiratory tract infections in children with asthma. J Allergy Clin Immunol 2007;119:314-21. https://doi.org/10.1016/j.jaci.2006.08.041
  61. Stott EJ, Heath GF. Factors affecting the growth of Rhinovirus 2 in suspension cultures of L132 cells. J Gen Virol 1970;6:15-24. https://doi.org/10.1099/0022-1317-6-1-15
  62. Papadopoulos NG, Sanderson G, Hunter J, Johnston SL. Rhinoviruses replicate effectively at lower airway temperatures. J Med Virol 1999;58:100-4. https://doi.org/10.1002/(SICI)1096-9071(199905)58:1<100::AID-JMV16>3.0.CO;2-D
  63. Papadopoulos NG, Bates PJ, Bardin PG, Papi A, Leir SH, Fraenkel DJ, et al. Rhinoviruses infect the lower airways. J Infect Dis 2000; 181:1875-84. https://doi.org/10.1086/315513
  64. Gern JE, Galagan DM, Jarjour NN, Dick EC, Busse WW. Detection of rhinovirus RNA in lower airway cells during experimentally induced infection. Am J Respir Crit Care Med 1997;155:1159-61. https://doi.org/10.1164/ajrccm.155.3.9117003
  65. Wos M, Sanak M, Soja J, Olechnowicz H, Busse WW, Szczeklik A. The presence of rhinovirus in lower airways of patients with bronchial asthma. Am J Respir Crit Care Med 2008;177:1082-9. https://doi.org/10.1164/rccm.200607-973OC
  66. Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM Jr, Hayden FG. Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 1995;171: 1329-33. https://doi.org/10.1093/infdis/171.5.1329
  67. Winther B, Brofeldt S, Christensen B, Mygind N. Light and scanning electron microscopy of nasal biopsy material from patients with naturally acquired common colds. Acta Otolaryngol 1984;97: 309-18. https://doi.org/10.3109/00016488409130994
  68. Turner RB, Hendley JO, Gwaltney JM Jr. Shedding of infected ciliated epithelial cells in rhinovirus colds. J Infect Dis 1982;145: 849-53. https://doi.org/10.1093/infdis/145.6.849
  69. Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, Schnurr D, et al. Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol 2006;34:192-203. https://doi.org/10.1165/rcmb.2004-0417OC
  70. Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005;289:L85-95. https://doi.org/10.1152/ajplung.00397.2004
  71. Proud D, Gwaltney JM Jr, Hendley JO, Dinarello CA, Gillis S, Schleimer RP. Increased levels of interleukin-1 are detected in nasal secretions of volunteers during experimental rhinovirus colds. J Infect Dis 1994;169:1007-13. https://doi.org/10.1093/infdis/169.5.1007
  72. Beale J, Jayaraman A, Jackson DJ, Macintyre JD, Edwards MR, Walton RP, et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med 2014;6:256ra134. https://doi.org/10.1126/scitranslmed.3009124
  73. Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 2014;190:1373-82. https://doi.org/10.1164/rccm.201406-1039OC
  74. Uller L, Leino M, Bedke N, Sammut D, Green B, Lau L, et al. Double -stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-beta in bronchial epithelial cells from donors with asthma. Thorax 2010;65:626-32. https://doi.org/10.1136/thx.2009.125930
  75. Mahmutovic-Persson I, Akbarshahi H, Bartlett NW, Glanville N, Johnston SL, Brandelius A, et al. Inhaled dsRNA and rhinovirus evoke neutrophilic exacerbation and lung expression of thymic stromal lymphopoietin in allergic mice with established experimental asthma. Allergy 2014;69:348-58. https://doi.org/10.1111/all.12329
  76. Lewis TC, Henderson TA, Carpenter AR, Ramirez IA, McHenry CL, Goldsmith AM, et al. Nasal cytokine responses to natural colds in asthmatic children. Clin Exp Allergy 2012;42:1734-44. https://doi.org/10.1111/cea.12005
  77. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201:937-47. https://doi.org/10.1084/jem.20041901
  78. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 2006;12:1023-6. https://doi.org/10.1038/nm1462
  79. Baraldo S, Contoli M, Bazzan E, Turato G, Padovani A, Marku B, et al. Deficient antiviral immune responses in childhood: distinct roles of atopy and asthma. J Allergy Clin Immunol 2012;130: 1307-14. https://doi.org/10.1016/j.jaci.2012.08.005
  80. Miller EK, Hernandez JZ, Wimmenauer V, Shepherd BE, Hijano D, Libster R, et al. A mechanistic role for type III IFN-$\lambda{1}$ in asthma exacerbations mediated by human rhinoviruses. Am J Respir Crit Care Med 2012;185:508-16. https://doi.org/10.1164/rccm.201108-1462OC
  81. Inoue D, Yamaya M, Kubo H, Sasaki T, Hosoda M, Numasaki M, et al. Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Respir Physiol Neurobiol 2006;154:484-99. https://doi.org/10.1016/j.resp.2005.11.006
  82. Nagarkar DR, Bowman ER, Schneider D, Wang Q, Shim J, Zhao Y, et al. Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages. J Immunol 2010;185:2525-35. https://doi.org/10.4049/jimmunol.1000286
  83. Grunstein MM, Hakonarson H, Whelan R, Yu Z, Grunstein JS, Chuang S. Rhinovirus elicits proasthmatic changes in airway responsiveness independently of viral infection. J Allergy Clin Immunol 2001;108:997-1004. https://doi.org/10.1067/mai.2001.120276

피인용 문헌

  1. Seasonal Cycle and Relationship of Seasonal Rhino- and Influenza Virus Epidemics With Episodes of Asthma Exacerbation in Different Age Groups vol.9, pp.6, 2017, https://doi.org/10.4168/aair.2017.9.6.517
  2. Non-Coding RNAs in Pediatric Airway Diseases vol.8, pp.12, 2016, https://doi.org/10.3390/genes8120348
  3. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood vol.9, pp.None, 2016, https://doi.org/10.3389/fmicb.2018.00686
  4. Eosinophils and Respiratory Viruses vol.32, pp.5, 2016, https://doi.org/10.1089/vim.2018.0150