DOI QR코드

DOI QR Code

Evaluation of Antifreeze Proteins on Miniature Pig Sperm Viability, DNA Damage, and Acrosome Status during Cryopreservation

  • Kim, Daeyoung (Department of Life Science, College of Bio-Nano Technology, Gachon University)
  • Received : 2016.12.20
  • Accepted : 2016.12.29
  • Published : 2016.12.31

Abstract

The cryopreservation of sperm has become the subject of research for successful artificial insemination technologies. Antifreeze proteins (AFPs), one of the factors necessary for effective cryopreservation, are derived from certain Antarctic organisms. These proteins decrease the freezing point of water within these organisms to below the temperature of the surrounding seawater to protect the organism from cold shock. Accordingly, a recent study found that AFPs can increase the motility and viability of spermatozoa during cryopreservation. To evaluate this relationship, we performed cryopreservation of boar sperm with AFPs produced in the Arctic yeast Leucosporidium sp. AFP expression system at four concentrations (0, 0.01, 0.1, and $1{\mu}g/ml$) and evaluated motility using computer assisted sperm analysis. DNA damage to boar spermatozoa was measured by the comet assay, and sperm membrane integrity and acrosome integrity were evaluated by flow cytometry. The results showed that motility was positively affected by the addition of AFP at each concentration except $1{\mu}g/ml$ (p<0.001). Although cryopreservation with AFP decreased the viability of the boar sperm using, the tail DNA analyses showed that there was no significant difference between the control and the addition of 0.1 or $0.01{\mu}g/ml$ AFP. In addition, the percentage of live sperm with intact acrosomes showed the least significant difference between the control and $0.1{\mu}g/ml$ AFP (p<0.05), but increased with $1{\mu}g/ml$ AFP (p<0.001). Our results indicate that the addition of AFP during boar sperm cryopreservation can improve viability and acrosome integrity after thawing.

Keywords

References

  1. Aitken, R.J., Gordon, E., Harkiss, D., Twigg, J.P., Milne, P., Jennings, Z., Irvine, D.S., 1998. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol. Reprod. 59(5):1037-1046. https://doi.org/10.1095/biolreprod59.5.1037
  2. Alabedalkarim, N.M., Bozhok, G.A., Legach, E.I., Ustichenko, V.D., Zubov, P.M., Bilyavskaya, S.B., Dudetskaya, G.V., Bondarenko, T.P., Hoffmann, M.W., 2012. Outcome of adrenal tissue fragments allotransplantation: The impact of cryopreservation. Cryobiology 65(3):188-195. https://doi.org/10.1016/j.cryobiol.2012.05.013
  3. Almlid, T., Johnson, L.A., 1988. Effects of glycerol concentration, equilibration time and temperature of glycerol addition on post-thaw viability of boar spermatozoa frozen in straws. J. Anim. Sci. 66(11): 2899-2905. https://doi.org/10.2527/jas1988.66112899x
  4. Bailey, J.L., Lessard, C., Jacques, J., Breque, C., Dobrinski, I., Zeng, W., Galantino-Homer, H.L., 2008. Cryopreservation of boar semen and its future importance to the industry. Theriogenology 70(8): 1251-1259. https://doi.org/10.1016/j.theriogenology.2008.06.014
  5. Bayer-Giraldi, M., Weikusat, I., Besir, H., Dieckmann, G., 2011. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63(3): 210-219. https://doi.org/10.1016/j.cryobiol.2011.08.006
  6. Beirao, J., Zilli, L., Vilella, S., Cabrita, E., Schiavone, R., Herraez, M.P., 2012. Improving sperm cryopreservation with antifreeze proteins: effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biol Reprod 86(2):59. https://doi.org/10.1095/biolreprod.111.093401
  7. Bencharif, D., Amirat-Briand, L., Garand, A., Anton, M., Schmitt, E., Desherces, S., Delhomme, G., Langlois, M.L., Barriere, P., Destrumelle, S., Vera-Munoz, O., Tainturier, D., 2012. The advantages of using a combination of LDL and glutamine in comparison with TRIS egg yolk and Equex(R) STAMP extenders in the cryopreservation of canine semen. Res. Vet. Sci. 93(1):440-447. https://doi.org/10.1016/j.rvsc.2011.06.027
  8. Boe-Hansen, G.B., Ersboll, A.K., Greve, T., Christensen, P., 2005. Increasing storage time of extended boar semen reduces sperm DNA integrity. Theriogenology 63(7):2006-2019. https://doi.org/10.1016/j.theriogenology.2004.09.006
  9. Cabrita, E., Robles, V., Rebordinos, L., Sarasquete, C., Herraez, M.P., 2005. Evaluation of DNA damage in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) cryopreserved sperm. Cryobiology 50(2):144-153. https://doi.org/10.1016/j.cryobiol.2004.12.003
  10. Chaytor, J.L., Ben, R.N., 2010. Assessing the ability of a short fluorinated antifreeze glycopeptide and a fluorinated carbohydrate derivative to inhibit ice recrystallization. Bioorg. Med. Chem. Lett. 20(17):5251-5254. https://doi.org/10.1016/j.bmcl.2010.06.148
  11. Davies, P.L., Baardsnes, J., Kuiper, M.J., Walker, V.K., 2002. Structure and function of antifreeze proteins. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357(1423):927-935. https://doi.org/10.1098/rstb.2002.1081
  12. DeLuca, C.I., Comley, R., Davies, P.L., 1998. Antifreeze proteins bind independently to ice. Biophys. J. 74(3):1502-1508. https://doi.org/10.1016/S0006-3495(98)77862-2
  13. Dong, Q., Hill, D., VandeVoort, C.A., 2009. Interactions among pre-cooling, cryoprotectant, cooling, and thawing for sperm cryopreservation in rhesus monkeys. Cryobiology 59(3):268-274. https://doi.org/10.1016/j.cryobiol.2009.08.002
  14. Donnelly, E.T., McClure, N., Lewis, S.E., 1999. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil. Steril. 72(3):484-495. https://doi.org/10.1016/S0015-0282(99)00267-8
  15. Felipe-Perez, Y.E., Valencia, J., Juarez-Mosqueda Mde, L., Pescador, N., Roa-Espitia, A.L., Hernandez-Gonzalez, E.O., 2012. Cytoskeletal proteins F-actin and beta-dystrobrevin are altered by the cryopreservation process in bull sperm. Cryobiology 64(2):103-109. https://doi.org/10.1016/j.cryobiol.2011.12.004
  16. Forero-Gonzalez, R.A., Celeghini, E.C., Raphael, C.F., Andrade, A.F., Bressan, F.F., Arruda, R.P., 2012. Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma, acrosomal and mitochondrial membranes. Andrologia 44 Suppl 1:154-159. https://doi.org/10.1111/j.1439-0272.2010.01154.x
  17. Foster, M.L., Love, C.C., Varner, D.D., Brinsko, S.P., Hinrichs, K., Teague, S., Lacaze, K., Blanchard, T.L., 2011. Comparison of methods for assessing integrity of equine sperm membranes. Theriogenology 76(2):334-341. https://doi.org/10.1016/j.theriogenology.2011.02.012
  18. Fraser, L., Strzezek, J., 2005. Effects of freezing-thawing on DNA integrity of boar spermatozoa assessed by the neutral comet assay. Reprod. Domest. Anim. 40(6):530-536. https://doi.org/10.1111/j.1439-0531.2005.00626.x
  19. Fraser, L., Strzezek, J., 2007. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing-thawing? Theriogenology 68(2):248-257. https://doi.org/10.1016/j.theriogenology.2007.05.001
  20. Garner, D.L., Johnson, L.A., 1995. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 53(2):276-284. https://doi.org/10.1095/biolreprod53.2.276
  21. Gwak, I.G., Jung, W.S., Kim, H.J., Kang, S.H., Jin, E., 2010. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar. Biotechnol. (NY) 12(6):630-639. https://doi.org/10.1007/s10126-009-9250-x
  22. Huber, A.J., Aberle, T., Schleicher, M., Wendel, H.P., Brockbank, K.G., 2012. Characterization of a simplified ice-free cryopreservation method for heart valves. Cell Tissue Bank 14(2):195-203. https://doi.org/10.1007/s10561-012-9319-z
  23. Inglis, S.R., Turner, J.J., Harding, M.M., 2006. Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties. Curr. Protein Pept. Sci. 7(6):509-522. https://doi.org/10.2174/138920306779025576
  24. Isachenko, E., Isachenko, V., Katkov, II, Dessole, S., Nawroth, F., 2003. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod. Biomed. Online 6(2):191-200. https://doi.org/10.1016/S1472-6483(10)61710-5
  25. Jeong, Y.J., Kim, M.K., Song, H.J., Kang, E.J., Ock, S.A., Kumar, B.M., Balasubramanian, S., Rho, G.J., 2009. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes. Cryobiology 58(2):181-189. https://doi.org/10.1016/j.cryobiol.2008.12.004
  26. Jo, J.W., Jee, B.C., Lee, J.R., Suh, C.S., 2011. Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil. Steril. 96(5):1239-1245. https://doi.org/10.1016/j.fertnstert.2011.08.023
  27. Johnson, L.A., Weitze, K.F., Fiser, P., Maxwell, W.M., 2000. Storage of boar semen. Anim. Reprod. Sci. 62(1-3):143-172. https://doi.org/10.1016/S0378-4320(00)00157-3
  28. Kawahara, H., Higa, S., Tatsukawa, H., Obata, H., 2009. Cryoprotection and cryosterilization effects of type I antifreeze protein on E. coli cells. Biocontrol Sci. 14(2):49-54. https://doi.org/10.4265/bio.14.49
  29. Klimowicz-Bodys, M.D., Batkowski, F., Ochrem, A.S., Savic, M.A., 2012. Comparison of assessment of pigeon sperm viability by contrast-phase microscope (eosin-nigrosin staining) and flow cytometry (SYBR-14/propidium iodide (PI) staining) [evaluation of pigeon sperm viability]. Theriogenology 77(3):628-635. https://doi.org/10.1016/j.theriogenology.2011.09.001
  30. Kristiansen, E., Ramlov, H., Hojrup, P., Pedersen, S.A., Hagen, L., Zachariassen, K.E., 2011. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochem. Mol. Biol. 41(2):109-117. https://doi.org/10.1016/j.ibmb.2010.11.002
  31. Lee, S.G., Koh, H.Y., Lee, J.H., Kang, S.H., Kim, H.J., 2012. Cryopreservative Effects of the Recombinant Ice-Binding Protein from the Arctic Yeast Leucosporidium sp. on Red Blood Cells. Appl. Biochem. Biotechnol. 167(4):824-834. https://doi.org/10.1007/s12010-012-9739-z
  32. Logsdon, J.M., Jr., Doolittle, W.F., 1997. Origin of antifreeze protein genes: a cool tale in molecular evolution. Proc. Natl. Acad. Sci. USA 94(8):3485-3487. https://doi.org/10.1073/pnas.94.8.3485
  33. Makarevich, A.V., Kubovicova, E., Popelkova, M., Fabian, D., Cikos, S., Pivko, J., Chrenek, P., 2010. Several aspects of animal embryo cryopreservation: anti-freeze protein (AFP) as a potential cryoprotectant. Zygote 18(2):145-153. https://doi.org/10.1017/S0967199409990141
  34. Malpique, R., Tostoes, R., Beier, A.F., Serra, M., Brito, C., Schulz, J.C., Bjorquist, P., Zimmermann, H., Alves, P.M., 2012. Surface-based cryopreservation strategies for human embryonic stem cells: A comparative study. Biotechnol. Prog. 28(4):1079-1087. https://doi.org/10.1002/btpr.1572
  35. Martinez-Paramo, S., Barbosa, V., Perez-Cerezales, S., Robles, V., Herraez, M.P., 2009. Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos. Cryobiology 58(2):128-133. https://doi.org/10.1016/j.cryobiol.2008.11.013
  36. Martinez-Pastor, F., Mata-Campuzano, M., Alvarez-Rodriguez, M., Alvarez, M., Anel, L., de Paz, P., 2010. Probes and techniques for sperm evaluation by flow cytometry. Reprod. Domest. Anim. 45 Suppl 2:67-78. https://doi.org/10.1111/j.1439-0531.2010.01622.x
  37. Medeiros, C.M., Forell, F., Oliveira, A.T., Rodrigues, J.L., 2002. Current status of sperm cryopreservation: why isn't it better? Theriogenology 57(1):327-344. https://doi.org/10.1016/S0093-691X(01)00674-4
  38. Nagy, S., Jansen, J., Topper, E.K., Gadella, B.M., 2003. A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68(5):1828-1835. https://doi.org/10.1095/biolreprod.102.011445
  39. Niu, Z.H., Huang, X.F., Jia, X.F., Zheng, J., Yuan, Y., Shi, T.Y., Diao, H., Yu, H.G., Sun, F., Zhang, H.Q., Shi, H.J., Feng, Y., 2011. A sperm viability test using SYBR-14/propidium iodide flow cytometry as a tool for rapid screening of primary ciliary dyskinesia patients and for choosing sperm sources for intracytoplasmic sperm injection. Fertil. Steril. 95(1):389-392. https://doi.org/10.1016/j.fertnstert.2010.07.1045
  40. Nur, Z., Zik, B., Ustuner, B., Sagirkaya, H., Ozguden, C.G., 2010. Effects of different cryoprotective agents on ram sperm morphology and DNA integrity. Theriogenology 73(9):1267-1275. https://doi.org/10.1016/j.theriogenology.2009.12.007
  41. Orgal, S., Zeron, Y., Elior, N., Biran, D., Friedman, E., Druker, S., Roth, Z., 2012. Season-induced changes in bovine sperm motility following a freeze-thaw procedure. J. Reprod. Dev. 58(2):212-218. https://doi.org/10.1262/jrd.10-149N
  42. Palasz, A.T., Mapletoft, R.J., 1996. Cryopreservation of mammalian embryos and oocytes: recent advances. Biotechnol. Adv. 14(2):127-149. https://doi.org/10.1016/0734-9750(96)00005-5
  43. Park, K.S., Do, H., Lee, J.H., Park, S.I., Kim, E., Kim, S.J., Kang, S.H., Kim, H.J., 2012. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64(3):286-296. https://doi.org/10.1016/j.cryobiol.2012.02.014
  44. Partyka, A., Nizanski, W., Lukaszewicz, E., 2010. Evaluation of fresh and frozen-thawed fowl semen by flow cytometry. Theriogenology 74(6):1019-1027. https://doi.org/10.1016/j.theriogenology.2010.04.032
  45. Pena, F.J., Johannisson, A., Wallgren, M., Rodriguez Martinez, H., 2003. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim. Reprod. Sci. 78(1-2):85-98. https://doi.org/10.1016/S0378-4320(03)00049-6
  46. Perez-Cerezales, S., Martinez-Paramo, S., Beirao, J., Herraez, M.P., 2010. Evaluation of DNA damage as a quality marker for rainbow trout sperm cryopreservation and use of LDL as cryoprotectant. Theriogenology 74(2):282-289. https://doi.org/10.1016/j.theriogenology.2010.02.012
  47. Perez-Cerezales, S., Martinez-Paramo, S., Cabrita, E., Martinez-Pastor, F., de Paz, P., Herraez, M.P., 2009. Evaluation of oxidative DNA damage promoted by storage in sperm from sex-reversed rainbow trout. Theriogenology 71(4):605-613. https://doi.org/10.1016/j.theriogenology.2008.09.057
  48. Prathalingam, N.S., Holt, W.V., Revell, S.G., Mirczuk, S., Fleck, R.A., Watson, P.F., 2006. Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze-thaw. Theriogenology 66(8):1894-1900. https://doi.org/10.1016/j.theriogenology.2006.04.041
  49. Riesco, M.F., Martinez-Pastor, F., Chereguini, O., Robles, V., 2012. Evaluation of zebrafish (Danio rerio) PGCs viability and DNA damage using different cryopreservation protocols. Theriogenology 77(1):122-130. https://doi.org/10.1016/j.theriogenology.2011.07.024
  50. Rubinsky, B., Arav, A., Mattioli, M., Devries, A.L., 1990. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun 173, 1369-1374. https://doi.org/10.1016/S0006-291X(05)80939-8
  51. Rubinsky, L., Raichman, N., Lavee, J., Frenk, H., Ben-Jacob, E., Bickler, P.E., 2010. Antifreeze protein suppresses spontaneous neural activity and protects neurons from hypothermia/re-warming injury. Neurosci. Res. 67(3):256-259. https://doi.org/10.1016/j.neures.2010.04.004
  52. Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175(1):184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  53. Villani, P., Spano, M., Pacchierotti, F., Weimer, M., Cordelli, E., 2010. Evaluation of a modified comet assay to detect DNA damage in mammalian sperm exposed in vitro to different mutagenic compounds. Reprod. Toxicol. 30(1):44-49. https://doi.org/10.1016/j.reprotox.2009.10.015
  54. Watson, P.F., 2000. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60-61:481-492. https://doi.org/10.1016/S0378-4320(00)00099-3
  55. Younis, A.I., Rooks, B., Khan, S., Gould, K.G., 1998. The effects of antifreeze peptide III (AFP) and insulin transferrin selenium (ITS) on cryopreservation of chimpanzee (Pan troglodytes) spermatozoa. J. Androl. 19(2):207-214.