References
- Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539-49. https://doi.org/10.1038/bjc.1955.55
- Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 1979;52:650-6. https://doi.org/10.1259/0007-1285-52-620-650
- Nozue M, Lee I, Yuan F, et al. Interlaboratory variation in oxygen tension measurement by Eppendorf "Histograph" and comparison with hypoxic marker. J Surg Oncol 1997;66:30-8. https://doi.org/10.1002/(SICI)1096-9098(199709)66:1<30::AID-JSO7>3.0.CO;2-O
- Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004;4:437-47. https://doi.org/10.1038/nrc1367
- Li XF, Carlin S, Urano M, Russell J, Ling CC, O'Donoghue JA. Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res 2007;67:7646-53. https://doi.org/10.1158/0008-5472.CAN-06-4353
- Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941-3.
- Hammond EM, Giaccia AJ. Hypoxia-inducible factor-1 and p53: friends, acquaintances, or strangers? Clin Cancer Res 2006;12:5007-9. https://doi.org/10.1158/1078-0432.CCR-06-0613
- Jeong H, Bok S, Hong BJ, Choi HS, Ahn GO. Radiation-induced immune responses: mechanisms and therapeutic perspectives. Blood Res 2016;51:157-63. https://doi.org/10.5045/br.2016.51.3.157
- Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
- Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014;211:781-90. https://doi.org/10.1084/jem.20131916
- Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12:5447-54. https://doi.org/10.1128/MCB.12.12.5447
- Dische S. Local tumour control and its effect upon survival of the patient. Australas Radiol 1983;27:181-5. https://doi.org/10.1111/j.1440-1673.1983.tb02431.x
- Chaplin DJ, Durand RE, Stratford IJ, Jenkins TC. The radiosensitizing and toxic effects of RSU-1069 on hypoxic cells in a murine tumor. Int J Radiat Oncol Biol Phys 1986;12:1091-5. https://doi.org/10.1016/0360-3016(86)90233-6
- Rockwell S. Oxygen delivery: implications for the biology and therapy of solid tumors. Oncol Res 1997;9:383-90.
- Hoskin PJ, Rojas AM, Bentzen SM, Saunders MI. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J Clin Oncol 2010;28:4912-8. https://doi.org/10.1200/JCO.2010.28.4950
- Riess JG. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol 2005;33:47-63. https://doi.org/10.1081/BIO-200046659
- Sun X, Xing L, Ling CC, Li GC. The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging. Int J Hyperthermia 2010;26:224-31. https://doi.org/10.3109/02656730903479855
- Adams GE, Cooke MS. Electron-affinic sensitization. I: A structural basis for chemical radiosensitizers in bacteria. Int J Radiat Biol Relat Stud Phys Chem Med 1969;15:457-71. https://doi.org/10.1080/09553006914550741
- Dische S. Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy. Radiother Oncol 1985;3:97-115. https://doi.org/10.1016/S0167-8140(85)80015-3
- Ahn GO, Brown M. Targeting tumors with hypoxia-activated cytotoxins. Front Biosci 2007;12:3483-501. https://doi.org/10.2741/2329
- Dische S, Saunders MI, Lee ME, Adams GE, Flockhart IR. Clinical testing of the radiosensitizer Ro 07-0582: experience with multiple doses. Br J Cancer 1977;35:567-79. https://doi.org/10.1038/bjc.1977.90
- Brown JM, Yu NY, Brown DM, Lee WW. SR-2508: a 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use. Int J Radiat Oncol Biol Phys 1981;7:695-703. https://doi.org/10.1016/0360-3016(81)90460-0
- Saunders MI, Anderson PJ, Bennett MH, et al. The clinical testing of Ro 03-8799: pharmacokinetics, toxicology, tissue and tumor concentrations. Int J Radiat Oncol Biol Phys 1984;10:1759-63. https://doi.org/10.1016/0360-3016(84)90544-3
- Coleman CN, Hirst VK, Brown DM, Halsey J. The effect of vitamin B6 on the neurotoxicity and pharmacology of desmethylmisonidazole and misonidazole: clinical and laboratory studies. Int J Radiat Oncol Biol Phys 1984;10:1381-6. https://doi.org/10.1016/0360-3016(84)90353-5
- Lee DJ, Cosmatos D, Marcial VA, et al. Results of an RTOG phase III trial (RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys 1995;32:567-76. https://doi.org/10.1016/0360-3016(95)00150-W
- Smithen CE, Clarke ED, Dale JA, et al. Novel (nitro-1-imidazolyl) alkanolamines as potential radiosensitisers with improved therapeutic properties. In: Brady LW, editor. Radiation sensitizers: their use in the clinical management of cancer. New York: Masson Publishing Inc.; 1980. p. 22-32.
- Dische S, Machin D, Chassange D. A trial of Ro 03-8799 (pimonidazole) in carcinoma of the uterine cervix: an interim report from the Medical Research Council Working Party on advanced carcinoma of the cervix. Radiother Oncol 1993;26:93-103. https://doi.org/10.1016/0167-8140(93)90089-Q
- Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Radiother Oncol 2011;100:22-32. https://doi.org/10.1016/j.radonc.2011.03.004
- Rischin D, Peters LJ, O'Sullivan B, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 2010;28:2989-95. https://doi.org/10.1200/JCO.2009.27.4449
- Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011;11:393-410. https://doi.org/10.1038/nrc3064
- Arteel GE, Thurman RG, Raleigh JA. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur J Biochem 1998;253:743-50. https://doi.org/10.1046/j.1432-1327.1998.2530743.x
- Karasawa K, Sunamura M, Okamoto A, et al. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: long-term results of a placebocontrolled randomised study. Radiother Oncol 2008;87:326-30. https://doi.org/10.1016/j.radonc.2008.02.007
- Brown JM. The hypoxic cell: a target for selective cancer therapy: eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999;59:5863-70.
- Marcu L, Olver I. Tirapazamine: from bench to clinical trials. Curr Clin Pharmacol 2006;1:71-9. https://doi.org/10.2174/157488406775268192
- Fleming IN, Manavaki R, Blower PJ, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer 2015;112:238-50. https://doi.org/10.1038/bjc.2014.610
- Rischin D, Hicks RJ, Fisher R, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006;24:2098-104. https://doi.org/10.1200/JCO.2005.05.2878
- Dewhirst MW. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res 2009;172:653-65. https://doi.org/10.1667/RR1926.1
- Lin Z, Mechalakos J, Nehmeh S, et al. The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 2008;70:1219-28. https://doi.org/10.1016/j.ijrobp.2007.09.050
- Connell PP, Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res 2009;69:383-92. https://doi.org/10.1158/0008-5472.CAN-07-6871
- Kallman RF. The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology 1972;105:135-42. https://doi.org/10.1148/105.1.135
- Fu KK, Pajak TF, Trotti A, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys 2000;48:7-16. https://doi.org/10.1016/S0360-3016(00)00663-5
- Timmerman RD. Surgery versus stereotactic body radiation therapy for early-stage lung cancer: who's down for the count? J Clin Oncol 2010;28:907-9. https://doi.org/10.1200/JCO.2009.26.5165
- Carlson DJ, Keall PJ, Loo BW Jr, Chen ZJ, Brown JM. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys 2011;79:1188-95. https://doi.org/10.1016/j.ijrobp.2010.10.007
- Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010;303:1070-6. https://doi.org/10.1001/jama.2010.261
- Nagata Y, Takayama K, Matsuo Y, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys 2005;63:1427-31. https://doi.org/10.1016/j.ijrobp.2005.05.034
- Chang JY, Balter PA, Dong L, et al. Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2008;72:967-71. https://doi.org/10.1016/j.ijrobp.2008.08.001
- Song C, Hong BJ, Bok S, et al. Real-time tumor oxygenation changes after single high-dose radiation therapy in orthotopic and subcutaneous lung cancer in mice: clinical implication for stereotactic ablative radiation therapy schedule optimization. Int J Radiat Oncol Biol Phys 2016;95:1022-31. https://doi.org/10.1016/j.ijrobp.2016.01.064
- Kelada OJ, Decker RH, Zheng MQ, et al. Quantification of tumor hypoxia in lung cancer patients undergoing stereotactic body radiotherapy using dynamic PET imaging. In: 15th International Congress of Radiation Research (ICRR) Annual Meeting; 2015 May 25-29; Kyoto, Japan.
- Siemann DW, Hill SA. Increased therapeutic benefit through the addition of misonidazole to a nitrosourea-radiation combination. Cancer Res 1986;46:629-32.
- Rofstad EK. Radiation response of the cells of a human malignant melanoma xenograft. Effect of hypoxic cell radiosensitizers. Radiat Res 1981;87:670-83. https://doi.org/10.2307/3575529
- Palcic B, Faddegon B, Skarsgard LD. The effect of misonidazole as a hypoxic radiosensitizer at low dose. Radiat Res 1984;100:340-7. https://doi.org/10.2307/3576355
- Wittenborn TR, Horsman MR. Targeting tumour hypoxia to improve outcome of stereotactic radiotherapy. Acta Oncol 2015;54:1385-92. https://doi.org/10.3109/0284186X.2015.1064162
- Nori D, Cain JM, Hilaris BS, Jones WB, Lewis JL Jr. Metronidazole as a radiosensitizer and high-dose radiation in advanced vulvovaginal malignancies, a pilot study. Gynecol Oncol 1983;16:117-28. https://doi.org/10.1016/0090-8258(83)90017-3
- Schlaff CD, Krauze A, Belard A, O'Connell JJ, Camphausen KA. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context. Radiat Oncol 2014;9:88. https://doi.org/10.1186/1748-717X-9-88
- Schuler E, Trovati S, King G, et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int J Radiat Oncol Biol Phys 2016 Sep 20. [Epub]. http://dx.doi.org/10.1016/j.ijrobp.2016.09.018.
- Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med 2014;6:245ra93. https://doi.org/10.1126/scitranslmed.3008973
- Palmer GM, Vishwanath K, Dewhirst MW. Application of optical imaging and spectroscopy to radiation biology. Radiat Res 2012;177:365-75. https://doi.org/10.1667/RR2531.1
- Vishwanath K, Klein D, Chang K, Schroeder T, Dewhirst MW, Ramanujam N. Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts. J Biomed Opt 2009;14:054051. https://doi.org/10.1117/1.3251013
- Park J, Lee J, Kwag J, et al. quantum dots in an amphiphilic polyethyleneimine derivative platform for cellular labeling, targeting, gene delivery, and ratiometric oxygen sensing. ACS Nano 2015;9:6511-21. https://doi.org/10.1021/acsnano.5b02357
- Kersey FR, Zhang G, Palmer GM, Dewhirst MW, Fraser CL. Stereocomplexed poly(lactic acid)-poly(ethylene glycol) nanoparticles with dual-emissive boron dyes for tumor accumulation. ACS Nano 2010;4:4989-96. https://doi.org/10.1021/nn901873t
- Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014;508:269-73. https://doi.org/10.1038/nature13034
- Prasad P, Gordijo CR, Abbasi AZ, et al. Multifunctional albumin-MnO(2) nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014;8:3202-12. https://doi.org/10.1021/nn405773r
- Song X, Feng L, Liang C, Yang K, Liu Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett 2016;16:6145-53. https://doi.org/10.1021/acs.nanolett.6b02365
Cited by
- Mechanism of the Antitumor and Radiosensitizing Effects of a Manganese Porphyrin, MnHex-2-PyP vol.27, pp.14, 2016, https://doi.org/10.1089/ars.2016.6889
- Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy vol.11, pp.6, 2016, https://doi.org/10.1021/acsnano.7b03675
- Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies vol.8, pp.40, 2016, https://doi.org/10.18632/oncotarget.19079
- Strahlentherapie bei Weichteilsarkomen der Extremitäten : Ihre Rolle in der multimodalen Behandlung vol.20, pp.1, 2018, https://doi.org/10.1007/s10039-017-0305-3
- Hierarchical Multiplexing Nanodroplets for Imaging-Guided Cancer Radiotherapy via DNA Damage Enhancement and Concomitant DNA Repair Prevention vol.12, pp.6, 2016, https://doi.org/10.1021/acsnano.8b01508
- Oxygen Sensing, Hypoxia Tracing and in Vivo Imaging with Functional Metalloprobes for the Early Detection of Non-communicable Diseases vol.6, pp.None, 2016, https://doi.org/10.3389/fchem.2018.00027
- Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy vol.1, pp.5, 2016, https://doi.org/10.1002/adtp.201800050
- Gas Therapy: An Emerging “Green” Strategy for Anticancer Therapeutics vol.1, pp.6, 2016, https://doi.org/10.1002/adtp.201800084
- The presumed MTH1-inhibitor TH588 sensitizes colorectal carcinoma cells to ionizing radiation in hypoxia vol.18, pp.None, 2018, https://doi.org/10.1186/s12885-018-5095-x
- Ultralong circulating choline phosphate liposomal nanomedicines for cascaded chemo-radiotherapy vol.7, pp.4, 2016, https://doi.org/10.1039/c9bm00051h
- Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets vol.19, pp.6, 2016, https://doi.org/10.1021/acs.nanolett.9b01458
- Reactive oxygen species and cancer: A complex interaction vol.452, pp.None, 2016, https://doi.org/10.1016/j.canlet.2019.03.020
- Enhancing the efficacy of immunotherapy using radiotherapy vol.9, pp.9, 2020, https://doi.org/10.1002/cti2.1169
- State-of-the-art iron-based nanozymes for biocatalytic tumor therapy vol.5, pp.2, 2020, https://doi.org/10.1039/c9nh00577c
- The Role of Hypoxia and SRC Tyrosine Kinase in Glioblastoma Invasiveness and Radioresistance vol.12, pp.10, 2020, https://doi.org/10.3390/cancers12102860
- Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy vol.35, pp.None, 2016, https://doi.org/10.1016/j.nantod.2020.100960
- Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer vol.7, pp.24, 2016, https://doi.org/10.1002/advs.202003584
- Reactive Oxygen Species: Beyond Their Reactive Behavior vol.46, pp.1, 2016, https://doi.org/10.1007/s11064-020-03208-7
- The regulation of immune checkpoints by the hypoxic tumor microenvironment vol.9, pp.None, 2016, https://doi.org/10.7717/peerj.11306
- Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations vol.97, pp.7, 2016, https://doi.org/10.1080/09553002.2021.1928785