DOI QR코드

DOI QR Code

Flowering, Fruiting, Seed Fall and Seed Viability of Acer pseudosieboldianum in Mt. Jungwang, Gangwondo

강원도 중왕산 당단풍나무의 개화, 결실, 종자 낙하량 및 종자활력

  • Kim, Hoi Jin (Department of Forest Management, Kangwon National University) ;
  • Kim, Gab Tae (Department of Forest Sciences, Sangji University)
  • 김회진 (강원대학교 산림경영학과) ;
  • 김갑태 (상지대학교 산림과학과)
  • Received : 2016.01.05
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

To examine the natural regeneration in the natural mixed-broadleaved forest, flowering, fruiting, seed-fall, and seed viabilities of Acer pseudosieboldianum (Ap) were investigated in Mt. Jungwang, Gangwon-do, from 2009 to 2015. The flower of Ap consisted many male and bisexual flowers on the corymb. Flowering dates are differed between sex morph in the same inflorescence. Stamens are stop growing and disappeared after pollinated pistil begin to grow in bisexual flowers, and male flowers have vestial pistil. The flowers of Ap might be pollinated by Apis mellifera, Andrenidae spp. and Syrphinae spp. Ap had some mechanism to prevent from self pollination with heterodichogamy. Mean annual seedfall of Ap was 70,780 ea/ha (ranged 310~234,840 ea/ha). Annual seedfall of Ap varied severely, and the maximum was about 760 times the minimum. Annual seed production of Ap might be to a normal distribution. Rates of damaged or decayed seeds are highest 59.3%, and those of sound seeds are 23.9%, Those of undeveloped and empty seeds are 9.2% and 7.6%, respectively. The most important factors influencing sound seed production might be the density and activities of insect pollinators and sucking pest in the flowerwing period, middle-late May. Successful regeneration of Ap might be in masting year and on the gap sites with proper conditions to germinate and grow. To understand the natural regeneration of deciduous hardwoods, further study on the characteristics of flowering and fruiting, pre- and post-dispersal seed predation, and annual variation on these factor should be needed.

천연활엽수림의 천연갱신 가능성을 파악하고자, 당단풍나무의 개화 결실, 종자낙하, 종자활력을 강원도 평창군 중왕산 지역에서 2009년부터 2015년까지 조사하였다. 당단풍나무 꽃은 산방화서에 양성화와 웅성화가 달렸으며, 화서 내에서 성형태간 개화시기가 달랐다. 양성화가 먼저 개화하는 개체에서는 암술이 수분되어 자라기 시작한 꽃에서는 수술은 더 이상 성숙하지 않고 소실되었으며, 웅성화가 먼저 개화하는 수술이 발달한 꽃에는 암술은 흔적으로만 존재하였다. 다른 개체에서의 화분이 꿀벌, 애꽃벌류 및 꽃등에류에 의하여 수분이 이루어지는 이형자웅이숙(heterodichogamy)의 성 형태로 자가수분을 회피하는 기작을 가지고 있었다. 종자 낙하량은 310~234,840 ea/ha의 범위로 평균은 70,780 ea/ha이었다. 종자생산에 있어 연년변동이 심하며, 최대치가 최소치의 760배 가량이었다. 당단풍나무의 연년종자생산은 정규분포하는 것이라 사료된다. 성숙한 종자 중에서 피해 또는 부후종자가 59.3%로 가장 많았고, 건전종자가 23.9%, 미발육 종자 9.2%, 쭉정이종자 7.6% 등으로 나타났다. 건전종자 생산량을 좌우하는 요인은 개화기인 5월 중,하순에 화분매개충의 활동과 어린 자방이 자라는 시기에 흡즙성 해충의 밀도와 활동성이 가장 중요한 요인이라 사료된다. 당단풍나무의 천연갱신은 종자풍년 이듬해에 발아와 생장에 유리한 조건을 갖춘 갭에서 이루어질 것으로 사료된다. 낙엽활엽수의 천연갱신을 이해하기 위해서 개화결실 특성과 비산 전후 종자 피식 문제에 대한 장기간의 연구가 필요할 것이라 사료된다.

Keywords

References

  1. Clason, T.R. 2002. Cost effectiveness of natural regeneration for sustaining production continuity in commercial pine plantations. Pages 287-290 in Outcall, Kenneth W., ed. Proceedings of the eleventh biennial southern silvicultural research conference. General Technical Report SRS-48. Asheville, NC: USDA, Forest Service, Southern Research Station, pp. 622.
  2. Charlesworth, D. 1999. Theories of the evoluyion of dioecy. pages 33-60 in Geber, M.A., Dawson, T.E. and L.F. Delp(eds.) Gender and Sexual Dimorphism in Flowering Plants. Springer, pp. 305.
  3. Crawley, M.J. 1989. Insect herbivores and plant population dynamics. Annual Review of Entomology 34: 531-564. https://doi.org/10.1146/annurev.en.34.010189.002531
  4. Filipiak, M. 2002. Age structure of natural regeneration of European silver-fir (Abies alba Mill.) the Sudety Mts. Dendrobiology 48: 9-14.
  5. Fukumoto, H. and Kajimura, H. 2003. Seed-Insect Fauna in Pre-Dispersal Acorns of Quercus variabilis and Q. serrata and Its Impact on Acorn Production. In pages 90-93, Proccedings: IUFRO Kanazawa 2003 "Forest Insects Population Dynamics and Host Influences".
  6. Gautam, M.K., Tripathi, A.K., and Manhas, R.K. 2007. Indicator species for the natural regeneration of Shorea robusta Gaertn. f.(sal). Current Science 91(10): 1359-1361.
  7. Gleiser, G., Verdu, M., Segarra-Moragues, J.G., Gonzalez-Martinez, S.C., and Pannell, J.R. 2008. Disassorative mating, sexual specialization, and the evolution of gender dimorphism in heterodichogamous Acer opalus. Evolution 62: 1676-1688. https://doi.org/10.1111/j.1558-5646.2008.00394.x
  8. Greene, D.F. and Johnson, E.A. 2004. Modelling the temporal variation in the seed production of North American trees. Canadian Journal of Forest Research 34(1): 65-75. https://doi.org/10.1139/x03-188
  9. Grubb, P.J. 1977. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Review 52: 107-145.
  10. Harmer, R. and Kerr, G. 1995. Natural Regeneration of Broadleaved Trees. Research Division of the Forestry Commission, Research Information Note 275, pp. 6.
  11. Harmer, R. and Grill, R. 2000. Natural Regeneration in Broadleaved Woodland: Deer Browsing and the Establishment of Advance Regeneration. Information Note 35. Forestry Commission, Edinburgh, pp. 6.
  12. Heineman, J.L., Simard, S.W., and Mather, W.J. 2002. Natural Regeneration of Small Patch Cuts in a Sourthern Interior ICH Forest. British Columbia, Ministry of Forests, Forest Science Program, Working Paper 64, pp. 14.
  13. Hulme, P.E. 1998. Post-dispersal seed predation: consequences for plant demography and evolution. Perspectives in Plant Ecology, Evolution and Systematics 1(1): 32-46. https://doi.org/10.1078/1433-8319-00050
  14. Ishikawa, Y. and Ito, K. 1989. The regeneration process in a mixed forest in central Hokkaido, Japan, Vegetatio 79: 75-84.
  15. Janzen, D.H. 1971. Seed predation by animals. Annual Review of Biology and Systematics 2: 465-492. https://doi.org/10.1146/annurev.es.02.110171.002341
  16. Karlsson, M. 2001. Natural Regeneration of Broadleaved Tree Species in Southern Sweden -Effects of silvicultural treatments and seed dispersal from surrounding stands-. Doctoral thesis, Swedish Univ. of Agricultural Sciences, pp. 44.
  17. Kim, G.T. 2011a. Sex morph, fruiting characteristics, and seed viability of Acer palmatum var. matsumurae (Koidz.) Makino. Journal of Korean Forest Society 100(2): 131-135. (in Korean with English abstract)
  18. Kim, H.J. 2011b. Effects of Sex Morph, Flowering, Fruiting and Insect Predation on Viable Seed Production of Acer pictum subsp. mono in Mt. Jungwang, Gangwon-do, Korea. MS Thesis, Seoul National University, pp. 46. (in Korean with English abstract).
  19. Kim, G.T. and Kim, H.J. 2012. Sex morph, fruiting habit, and seed viability of Acer palmatum. Journal of Korean Forest Society 101(1): 91-95. (in Korean with English abstract)
  20. Kimmins, J.P. 1997. Forest Ecology -A Foundation for Sustainable Management-, 2nd ed, Prentice Hall, N.J., pp. 596.
  21. Koenig, W.D. and Knops, J.M.H. 2000. Patterns of annual seed production by Northern Hemisphrer trees: A global perspective. The American Naturalist 155(1): 59-69. https://doi.org/10.1086/303302
  22. Lee, D.K., Shin, M.Y., Kim, G.T., Kwon, K.W., Kim, J.H. and Park, P.S. 2009. Practical Application Research on Eco-friendly Silvicultural Techniques and Development of Sustainable Forest Management Techniques in Natural Hardwood Forests. Korea Forest Service. Research Report. 337pp. (in Korean with English abstract).
  23. Renner, S.S., Beenken, L., Grimm, G.W., Kocyan, A., and Ricklefs, R.E. 2007. The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution 61: 2701-2719. https://doi.org/10.1111/j.1558-5646.2007.00221.x
  24. Shibata, M., Kikuchi, S., Tanaka, H., Sueyoshi, H., Yoshimaru, H., and Niiyama, K. 2009. Effects of population density, sex morph, and tree size on reproduction in heterodichogamous maple, Acer mono, in a temperate forest of Japan. Japanese Journal of Ecological Research 24: 1-9. https://doi.org/10.1007/s11284-008-0474-4
  25. Tal, O. 2009. Acer pseudoplatanus (Sapindaceae): Heterodichogamy and thrips pollination. Plant Systymatics and Evolution 278: 211-221. https://doi.org/10.1007/s00606-008-0141-9
  26. Tanaka, H. 1995. Seed demography of three co-occurring Acer species in a Japanese temperate deciduous forest. Journal of Vegetation Science 6: 887-896. https://doi.org/10.2307/3236403
  27. Yasaka, M., Terazawa, K., Koyama H., and Kon, H. 2003. Masting behaviour of Fagus crenata: spatial synchrony and pre-dispersal seed predation. Forest Ecology and Management 184: 277-284. https://doi.org/10.1016/S0378-1127(03)00157-9
  28. Zerbe, S. 2002. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantation. Forest Ecology and Management 167: 27-42. http://www.nature.go.kr https://doi.org/10.1016/S0378-1127(01)00686-7

Cited by

  1. Genetic Diversity and Genetic Structure of Acer pseudosieboldianum Populations in South Korea Based on AFLP Markers vol.105, pp.04, 2016, https://doi.org/10.14578/jkfs.2016.105.4.414
  2. 낙동정맥 마루금 일대의 신갈나무우점군락 특성 -백병산, 칠보산, 백암산, 운주산, 고헌산, 구덕산을 중심으로- vol.34, pp.4, 2016, https://doi.org/10.13047/kjee.2020.34.4.318