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ABSTRACT 

We consider a time-cost tradeoff problem with multiple milestones under a chain precedence graph. In the problem, 
some penalty occurs unless a milestone is completed before its appointed date. This can be avoided through compress-
ing the processing time of the jobs with additional costs. We describe the compression cost as the convex or the con-
cave function. The objective is to minimize the sum of the total penalty cost and the total compression cost. It has 
been known that the problems with the concave and the convex cost functions for the compression are NP-hard and 
polynomially solvable, respectively. Thus, we consider the special cases such that the cost functions or maximal com-
pression amounts of each job are identical. When the cost functions are convex, we show that the problem with the 
identical costs functions can be solved in strongly polynomial time. When the cost functions are concave, we show 
that the problem remains NP-hard even if the cost functions are identical, and develop the strongly polynomial ap-
proach for the case with the identical maximal compression amounts. 
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1.  INTRODUCTION 

The time-cost tradeoff problem (TCTP) is the pro-
ject scheduling such that the processing times can be 
decreased through the expenditure of additional resour-
ces such as labor and capital. Let the decrease in the 
processing time be referred to as compression. The TCTP 
was initiated from (Fulkerson, 1961; Ford and Fulkerson, 
1962; Kelley, 1961). Afterwards, many models have been 
introduced (see (Artigues et al., 2008; Brucker et al., 
1999; Demeulemeester and Herroelen, 2002; Weglarz, 
1999; Weglarz et al., 2011) for a comprehensive review). 
The classical TCTP has a single milestone for the over-

all project, that is, the last job, and the cost function for 
compressing a job is linear. In reality, however, 

 
• There exist multiple milestones throughout a project. 

For example, a venture capital firm invests small sum 
at first, and increases or decreases the investments 
depending on the progress of the project (Bell, 2000; 
Choi and Chung, 2014; Sahlman, 1994); 

• The relation between the cost and the compression 
amount may be nonlinear (Moussourakis and Hak-
sever, 2010), which may be described as the concave 
or the convex function. Note that the concave and 
convex functions mean the general laws of increasing 
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and diminishing marginal returns, respectively (Ber-
man, 1964; Choi and Park, 2015; Falk and Horowitz, 
1972; Lamberson and Hocking, 1970). 

 
To reflect this situation, we consider a TCTP with 

multiple milestones such that the cost function for com-
pressing the job is concave or convex. Furthermore, the 
structure of the precedence graph is described by the 
chain that can be found in a product development proc-
ess following a sequential pattern (Roemer and Ahmadi, 
2004). 

Our problems can be formally stated as follows. 
The TCTP is described by a directed graph G = (V, A), 
where V = {1, 2, …, n} is the set of jobs and A is the set 
of precedence relations. Relation (i, j) ∈ A means that 
job j can be started after job i is completed. Let D ⊆ V 
be the set of milestones. Note that without loss of gener-
ality, the problem with D ⊂ V can be transformed into 
the one with D = V through the simple argument in 
(Choi and Park, 2015). Thus, for simplicity of notation, 
we assume that D = V. Associated with job j is a initial 
processing time pj and a maximal compression amount 
uj, j = 1, 2, …, n. Let wj and dj be the penalty cost for 
tardiness and the due date of job j, respectively. Let x = 
(x1, x2, …, xn) be a vector for which xj is the compressed 
amount of job j and 0 ≤ xj ≤ uj, j = 1, 2, …, n. Let fj(xj) 
be the cost arising from compressing xj of job j, and a 
non-decreasing concave or convex function. Let Cj(x) be 
the completion time of job j under x. Then, our problem 
is defined as 

 

( ) 1 ( )n
j j jj T x jminimize w f x

∈ =
+∑ ∑  

0 , 1, 2, , ,j jsubject to x u j n≤ ≤ = L  
 

where T(x) = {j|Cj(x) > dj} is the set of tardy job sunder 
x. Let the TCTP with the convex and the concave com-
pression functions be referred to as convex-TCTP and 
concave-TCTP, respectively. Let job j be referred to as a 
just-in-time (JIT) job in x if it is completed exactly on its 
due date, that is, Cj(x) = dj. 

It has been known from (Choi and Park, 2015) that 
the convex-TCTP is polynomially solvable while the 
concave-TCTP is NP-hard. In this paper, we consider 
their special cases such that 

 
• The compression cost functions of each job are identi-

cal, that is fj(x) = f(x),  j = 1, 2, …, n. This implies 
that the level of each resource such as man or ma-
chine for compressing the jobs is similar or; 

• The maximal compression amounts of each job are 
identical, that is, uj = u, j = 1, 2, …, n. This implies 
that each job has a similar attribute in the aspect of 
compression. 

 
For simplicity of notation, let convex- and con-

cave-TCTP with fj(x) = f(x), j = 1, 2, …, n, be denoted 
convex- and concave-TCTP-f, respectively. Similarly, let 

convex- and concave-TCTP with uj = u, j = 1, 2, …, n 
be denoted convex- and concave-TCTP-u, respectively. 
Now, we introduce the optimality properties in (Choi 
and Park, 2015) below. 

 
• The TCTP has an optimal schedule satisfying at least 

one of the following conditions: 
i) All jobs are uncompressed; 
ii) There exists at least one JIT job 

• The TCTP has an optimal schedule such that jobs 
processed after the last JIT job are uncompressed. 

 
Throughout the paper, we consider only the sched-

ules satisfying the properties above. 
 
The rest of the paper is organized as follows. Sec-

tion 2 presents a strongly polynomial-time approach for 
the convex-TCTP-f. Section 3 proves the NP-hardness 
of the concave-TCTP-f and the strong polynomiality of 
the concave-TCTP-u. Finally, Section 4 discussesour con-
clusions. 

2.  CONVEX-TCTP 

In this section, we prove the strong polynomiality 
of the convex-TCTP-f. Note that the general convex-
TCTP can be reduced to the convex-TCTP-u as follows. 
Let 

 
( ), 0

( ( ))( )
( ),

( )

j j

j j
j j j max

max i

f x if x u
f M f u x u

f u if u x u
u u

≤ ≤⎧
⎪

= − −⎨
+ ≤ ≤⎪ −⎩

 

 
where M > 0 is a sufficiently large value and umax = max 
{uj|j = 1, 2,…, n}. Thus, the strong polynomiality of 
the convex-TCTP-u depends on the computational com-
plexity of CON(k, l) defined in Proposition 1 below. Thus, 
for the convex-TCTP, we consider only the convex-
TCTP-f. If ( )f x  is a linear function, then it is known 
from (Choi and Chung, 2014) that the convex-TCTP is 
solved in strongly polynomial time, though each compres-
sion cost function is different. Thus, assume that ( )f x  
consists of linear and non-linear parts whose total num-
ber is m. Let the i-th part of ( )f x  be denoted 

1( )f x , and 
the domain of the 

1( )f x  be {xj|vi-1 ≤ xj ≤ vi}, i = 1, 2, 
…, m. For the consistency of notation, let v0 = 0, and for 
simplicity, assume that vm ≥ max{uj|j = k+1, k+2, …, l}. 
Let ( )f x  be described as follows. 

 
1

1

2
1 2

1

( ), 0

( ),
( )

( ),

j

j

m
m j m

f x if x v

f x if v x v
f x

f x if v x v−

⎧ ≤ ≤
⎪
⎪ ≤ ≤⎪= ⎨
⎪
⎪

≤ ≤⎪⎩

M
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Proposition 1: Choi and Park (2015) If jobs k and l(k < l) 
are consecutive JIT jobs in an optimal schedule x* of the 
convex-TCTP-f, then ( )* * *

1 2, , ,k k lx x x+ + L  is an optimal 
solution of the following problem. 
 

1( , ) : ( )l
jj kCON k l minimize f x

= +∑  

1( ) ,l
k j j kj ksubject to d p x d

= +
+ − =∑  

0 , 1, 2, , .j jx u j k k l≤ ≤ = + + L  
 

Henceforth, we assume that jobs k and l are consecutive 
JIT jobs under an optimal schedule x* of the convex-
TCTP-f. Let O be the set of optimal solutions of CON(k, 
l). It is observed that ( )* * *

1 2, , ,k k lx x x+ + L  has the smallest 
tardy weight in O. We introduce the strongly polyno-
mial-time approach to obtain ( )* * *

1 2, , , ,k k lx x x+ + L  which 
is denoted 

*( , ).x k l  Let α  be the index of the last com-
pressed job in 

*( , ),x k l  that is, { *max 0,jj x j kα = > = +  
}1, 2, , .k l+ L  

 
Lemma 1: If ,lα <  then 

1( )f x  is a linear function. 
 

Proof: Suppose that 
1( )f x  is not linear. Let ( , )x k l  be a 

new schedule constructed by letting 
*x xα α ε= −  and lx =  

,ε  where 0ε >  is a sufficiently small value. Note that 
* 0lx =  and ( , )x k l  and 

*( , )x k l  have the same number of 
the tardy jobs. Then, since 

1( )f x  is a strictly convex 
function from the non-linearity of 

1( )f x , 
 

*
1 1( ) ( )l l

j jj k j kf x f x
= + = +

−∑ ∑  

( ) ( )* *( ) (0) ( ) ( )f x f f x fα α ε ε= + − − +  
* *( ) ( ) ( ) (0) 0f x f x f fα α ε εε

ε ε
⎛ ⎞− − −

= − >⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
This is a contradiction to Proposition 1. ■ 

 
Lemma 2: If ,lα <  then 

*
1jx v≤  for 1, 2, , .j α= L  

 
Proof: It can be proved by the similar argument of the 
proof of Lemma 1. ■ 

 
Theorem 1: If ,lα <  then 

 

{ }1*
*

1

min , , 1, , 1

,

j
j

l k jj k

u v for j k
x

d d x for jα

α

α
= +

⎧ = + −⎪= ⎨
− − =⎪⎩ ∑

L
 

 
Proof: It holds immediately from ( ) ( )jf x f x=  and Lem-
mas 1 and 2. ■ 

 
Henceforth, assume that job l is compressed, that is, 

.lα =  Let 
*( )P x  be the set of the partially compressed 

jobs in 
*( , ).x k l  

 

Lemma 3: If 1 2j j<  and { } *
1 2, ( ),j j P x⊆  then 

* *
1 2j jj j≥ .  

 
Proof: It can be proved by the similar argument of the 
proof of Lemma 1. ■ 

 
For simplicity of explanation, we introduce the follow-
ing property. Let the i-th domain have the partition 
property in 

*( , ),x k l  if 
   

*
1 1

*

,

,
i j i i i

j i

v x v if u v

x u otherwise
− −

⎧ ≤ ≤ ≥⎪
⎨

≤⎪⎩
 

 
Lemma 4: There exists the i-th domain with the parti-
tion property in 

*( , ).x k l  
 

Proof: If all jobs are fully compressed in 
*( , ),x k l  then 

the m-th domain has the partition property. Thus, hence 
forth, we assume that 

*( , )x k l  has at least one partially 
compressed job. Let job j1 be the partially compressed 
job such that 
  

{ }* *
1 ( )jj argmin x j P x= ∈ . 

 
Assume that 

1
*

1 .h j hv x v− ≤ <  If h = m, then Lemma 4 holds 
immediately from the definition of j1. Thus, assume that 
h < m. Then, there exists a job j2 such that 

2
* .h jv x<  

Let ( , )x k l  be a new schedule constructed by letting 
1jx  

1
*
jx ε= +  and 

2 2
* ,j jx x ε= −  where 0ε >  is a sufficiently 

small value. Note that ( , )x k l  and 
*( , )x k l  have the same 

number of the tardy jobs. Then, since 
1

* *
2,j h jx v x< <  

 
*

1 1( ) ( )l l
j jj k j kf x f x

= + = +
−∑ ∑  

( ) ( )( ) ( ) ( )( )1 2 1 2
* 1 * * 1 *h h h h
j j j jf x f x f x f xε ε+ += + − + + −  

( ) ( ) ( ) ( )2 2 1 1
1 * 1 * * *h h h h

j j j jf x f x f x f xε ε
ε

ε ε

+ +⎛ ⎞− − + −⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

    

0>  
 

This is a contradiction to the optimality of 
*( , ).x k l  ■ 

 
Lemma 5: Suppose that the l-th domain has the parti-
tion property in 

*( , )x k l . 
i) ( )hf x  is a linear function, then 

 

{ }

{ }
*

1

min , , 1, , 1

,

min , , 1, ,

j h

j j

j h

u v for j k

x for j

u v for j l

β

λ β

β−

⎧ = + −⎪
⎪= =⎨
⎪

= +⎪⎩

L

L
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where 
 

• { }1
1min ,j

j l k j hj kd d u vλ −
′′= +

= − −∑  

{ }11min ,l
j hj j u v′ −′= +

−∑ 　 

 
• β is the first index j such that { }1 min , .h j j hv u vλ− ≤ ≤  

ii) If ( )hf x  is a strictly convex function,  
 

*
*

*

,

, ,
j j

j
u if u t

x
t otherwise

⎧ ≤⎪= ⎨
⎪⎩

 

 
where 

*t  be such that 
 

{ } { }* *

* .
j j

j l k
j j u t j j u t

u t d d
∈ ≤ ∈ >

+ = −∑ ∑  

 
Proof: i) It holds immediately from the linearity of ( )hf x  
and Lemma 3. 

 
ii) Suppose that 

2
* * ,j jx x≠  where { } { }*1 2, .jj j j u t⊆ >  

For simplicity, assume that 
2

* * .j jx x<  Let ( , )x k l  be anew 
schedule constructed by letting 

1 1
*

j jx x ε= +  and 
2jx =  

2
* ,jx ε+  where 0ε >  is a sufficiently small value. Note 

that 
*( , )x k l  and ( , )x k l  have the same number of the tardy 

jobs. Then, since ( )hf x  is strictly convex and 
2

* * ,j jx x<  
  

*
1 1( ) ( )l l

j jj k j kf x f x
= + = +

−∑ ∑  

( ) ( )( ) ( ) ( )( )1 2 1 2
* * * *h h h h
j j j jf x f x f x f xε ε= + − + + −  

( ) ( ) ( ) ( )2 2 1 1
* * * *h h h h
j j j jf x f x f x f xε ε

ε
ε ε

⎛ ⎞− − + −⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

0>  
 

This is a contradiction. ■ 
 

Lemma 6: 
*( , )x k l  can be obtained in strongly polyno-

mial time. 
 

Proof: Lemma 6 can be proven from showing that β  
and 

*t  in Lemma 5 can be obtained in strongly polyno-
mial time. It is observed that β  can be obtained trivially 
in strongly polynomial time, and, furthermore, 

*t  can be 
obtained through the following procedure. 

 
Procedure 

*t  
 
Step 1: Sort the elements in { }1h j h j hP u v u v−= < <  in the 

increasing of ,ju  and the resulting sequence is ( (1) ,uπ  

)(2) ( ), , .hu uπ πL  where .hh P=  Note that ( ) ( 1) ,i iu uπ π +<  
1, 2, , 1.i h= −L  

Step 2: Partition the interval )1,h hv v−⎡⎣  into ( 1)h +  sub-
intervals in { }1 1, , ,hI I +L  where )( 1) ( ), ,i i iI u uπ π−⎡= ⎣  1,i =  
2, , 1.h +L  For consistency of notation, let (0) 1hu vπ −=  
and ( 1) .hhu vπ + =  

Step 3: For each 1, 2, , 1,i h= +L  construct {i jN j u= <  

}( 1)iuπ −  and calculate 
 

il k jj N
i

i

d d u

l k N
γ ∈

− −
=

− −

∑
 

 
Step 4: If there exists an index i′  such that ( 1) iu iπ γ ′′ − ≤  

( )u iπ ′≤  for some ,i′  then 
* ,it γ ′=  while there exists no 

domain with the partition property in 
*( , ),x k l  otherwise. 

 
Note that Procedure 

*t  can be done in ( ).O n  Thus, β  
and 

*t  in Lemma 5 can be obtained in strongly polyno-
mial time. ■ 

 
Numerical Example: Consider the instance such that  
 

2

2

, 0 2
2

( ) 4 4, 2 4

, 4 6
2

x if x

f x x if x

x if x

⎧
≤ ≤⎪

⎪⎪= − ≤ ≤⎨
⎪
⎪ ≤ ≤
⎪⎩

 

 
and 

 
Job j pj uj dj 

1 0 0 0 
2 2 1 100 
3 4 3 100 
4 6 5 100 
5 2 1 100 
6 8 6 100 
7 5 4 d7 

 
For simplicity, assume that jobs 1 and 7 are consecutive 
JIT jobs under an optimal schedule.  

 
i) 7 12d =  
Since jobs 1 and 7 are consecutive JIT jobs, the total 
compression amount should be 15, which implies that 
the second domain has the partition property. By Lem-
ma 5-i), 6.β =  Thus 

* * * * *
1 2 3 4 50, 1, 3, 4, 1,x x x x x= = = = =  

*
6 4x =  and 

*
7 2.x =  
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ii) 7 9d =  
In this case, the third domain has the partition property. 
By Lemma 5-ii), 

* 4.5.t =  Thus 
* * * *
1 2 3 40, 1, 3,x x x x= = = =  

* *
5 64.5, 1, 4.5x x= =  and 

*
7 4.x =  

 
Theorem 2: The convex-TCTP-f is solved in strong 
polynomial time if the compression cost function of 
each job is identical. 

 
Proof: 

*( , )x k l  satisfying Lemma 5 can be obtained in 
2( )O n  

by Lemma 6. Let ( )*( , )v x k l  be the total cost of 
*( , ).x k l  

Then, we can obtain the optimal schedule by reduction 
to the shortest path problem. The reduced graph is same 
with the one in the proof of Theorem 4 except that the 
length of edge from ( )N k  to ( )N l  is ( )*( , ) .v x k l  Since 
the number of the edges in the reduced graph is 

2( )O n  
and the graph is acyclic, the reduced problem can be 
solved in 

4( )O n  by the algorithm of (Ahuja et al., 1990). 
The proof is complete.■ 

3.  CONCAVE-TCTP 

In this section, we show that the concave-TCTP-f 
remains NP-hard while the one with concave-TCTP-u 
can be solved in strongly polynomial time. 

 
Theorem 3: The decision version of the concave-TCTP-f 
is NP-complete. 

 
Proof: The proof is by reduction from the partition prob-
lem which is known to be NP-complete (Garey and 
Johnson, 1979). 
 
Partition problem: Given m positive integers 1 2, , ,a a L  

ma  such that 1 ,m
jj a A

=
=∑  is there a subset {1, 2, ,I ⊂ L  

}m  such that / 2?jj I a A
∈

=∑  
 

The decision version of the concave-TCTP-f is stated as 
follows: Given a threshold K, find a schedule x such that 

 

( ) 1 ( ) .n
j j jj T x jw f x K

∈ =
+ ≤∑ ∑  

 
It is clear that the decision version of the concave-
TCTP-f is in NP. Now, we reduce the partition problem 
to the decision version of the concave-TCTP-f. Given an 
instance of the partition problem, we construct an in-
stance of the concave-TCTP-f as follows. Let 2 1.n m= +  
Given (2 1)m +  jobs such that for 1, 2, , ,j m= L  let 

• 2 1 2 1, ,j
j j jp M w a− −= =  and 

1
2 1 1 ;j i

j id M A−
− =
= +∑  

• 2
2 2, ( 1) ,j

j j jp M a w m A= + = +  and 2 1 ;j i
j id M A

=
= +∑  

• 2
2 1 2 10, ( 1) ,m mp w m A+ += = + 　and 2 1 1 / 2,m i

m id M A+ =
= +∑  

where 
2 .mM A=  

 
Let , 1, 2, , 2 1j ju p j m= = +L  and 
 

2

2

, 0
( )

,

j
j

j j

A for x
f x

A for x u

ε
ε

ε

⎧
≤ ≤⎪

= ⎨
⎪ ≤ ≤⎩

 

 
where 0∈>  is a sufficiently small value. Note that ( )jf x  
is continuous and concave, and 

2( )jf u A=  for 1, 2,j =  
, 2 1.m +L  Let 

2 / 2.K mA A= +  
 

Suppose there exists a set I  such that .
2jj I
Aa

∈
=∑  We 

can construct a schedule x  by letting 2 1 2 1j jx u− −=  and 

2 0jx =  if ,j I∈  while 2 1 0jx − =  and 2 2 ,j jx u=  otherwise. 
Then, for j I∈  
 

( )2 2
2 1 1( ) j

j i iiC x p x−
− =

= −∑  

{ }
1
1 1,2, , 1

j i
ii i j IM a−

= ∈ −
= +∑ ∑ L I

 

1
2 11 2

j i
ji

AM d−
−=

≤ + ≤∑  

 
while for j I∉  

 
1

2 1 2 1 2 11( ) .jj i
j j jiC x p M M A d−
− − −=

≥ = > + =∑  
 

For 1, 2, , ,j m= L  furthermore, 
 

2
2 1( ) ( )j

j i iiC x p x
=

= −∑  

{ } ˆ1 1,2, ,
j i

ii j j IM a
= ∈

= +∑ ∑ L I
 

21 ,
2

j i
ji

AM d
=

≤ + ≤∑  

 
and, since 2 1 0mp + =  and { } ˆ1,2, , \ / 2,jj m I a A

∈
=∑ L

 

 
2 1 2( ) ( )m mC x C x+ =  

{ } ˆ1 1,2, ,
m i

ii j m IM a
= ∈

= +∑ ∑ L I
 

2 11 .
2

m i
mi

AM d +=
= + =∑  

 
Note that { }{ }( ) 2 1 1, 2, , \ .T x j j m I= − ∈ L  

 
Since { } ˆ1,2, , \ / 2,ij m I a A

∈
=∑ L

 

2 1
( ) 1 ( )m

j jj T x jw f x+
∈ =

+∑ ∑%
 

{ }
2

ˆ1,2, , \ .jj m I a mA K
∈

+ =∑ L
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Suppose there exists a schedule x̂  such that 
 

2 1
( ) 1

ˆ( ) .m
j jj T x jw f x K+

∈ =
+ ≤∑ ∑%

     (1) 

 
Let P̂  be the sets of partially compressed jobs in ˆ.x  If 
there exists some partially compressed job j′  such that 
ˆ ,jx ε′ ≥  then we can construct a schedule x%  by letting 

j jx u′ ′=%  without the increase of the compression and 
tardiness costs. Thus, with out loss of generality, assume 
that ˆ jx ε<  for ˆ.j P∈  

 
Claim: ˆ 1.P ≤  

 
Proof: If ˆ 1,P >  then we can select two jobs in { }, ,j j′  
where ,j j′<  and construct a new schedule x̂′  by letting 
ˆ ˆj jx x δ′ = +  and ˆ ˆ ,j jx x δ′ ′′ = +  where { }ˆ ˆmin , .j jx xδ ε ′′= −  

If ˆ ,jx ε′ ≥  then ˆ ,j jx u′ =  which does not increase the com-
pression and tardiness costs. Note that the total com-
pression cost is unchanged and ˆ ˆ( ) ( ).T x x′ ⊆  By repeat-
edly applying this argument, we can obtain the schedule 
satisfying Claim. □ 

 
By Claim, assume that ˆ 1.P ≤  If ˆ 1,P =  then we can 
construct a new schedule x%  by letting 0jx =%  for ˆ.j P∈  
Due to the integrality of the elements in { , ,j j jp u d j =  

}1, 2, , 2 1 ,m +L  the tardy set is unchanged, that is, ( )T x%  
ˆ( ).T x=  Thus, we can obtain a schedule x%  such that P̂ =  

∅  and 

2 1
( ) 1 ( ) .m

j jj T x jw f x K+
∈ =

+ ≤∑ ∑%
%  

Thus, without loss of generality, assume that ˆ .P =∅  Let 
Î  be set of indices j such that job 2j is fully compressed 
in ˆ.x  In order to satisfy inequality (1), at least one job in 
{ }2 1, 2j j−  must be fully compressed. Otherwise, some 
job in { }2, 4, , 2mL  becomes tardy, which implies that 
inequality (1) is violated. Furthermore, the number of 
compressed jobs should be at most m. Otherwise, the 
total compression cost is larger than or equal to ( 1)m +  

2,A  which implies that inequality (1) is violated. Thus, 
exactly one job in { }2 1, 2j j−  must become pressed. 
Then, inequality (1) can be rewritten as follows. 

ˆ .
2jj I
Aa

∈
≤∑    (2) 

Since job 2 1m +  should not be tardy in order to keep 
inequality (2), furthermore, 

{ } ˆ2 1 1 1,2, , \
ˆ( ) m i

m ji j m IC x M a+ = ∈
= +∑ ∑ L

 

1 .
2

m i
i

AM
=

≤ +∑         (3) 

By inequalities (2) and (3), 

{ } ˆ1,2, , \ .
2j jj I j m I
Aa a

∈ ∈
=∑ ∑ L

 

Thus, Î  is a solution to the partition problem. ■ 
 

The following optimality property for the concave-TCTP 
is induced from the proof of Lemma 3 in (Choi and Park, 
2015). 

 
Proposition 2: The number of a partially compressed 
job is at most one between consecutive JIT jobs in an 
optimal schedule of the concave-TCTP. 
 
Based on Proposition 2, henceforth, we can reduce the 
concave-TCTP-u to the shortest path problem. 

 
Theorem 4: The concave-TCTP-u can be solved in strong 
polynomial time. 
 
Proof: We can reduce the concave-TCTP-u to the short-
est path problem as follows. Let ( )N k  be the node that 
when jobs in { }1, 2, , kL  have been considered, job k is 
the current last JIT job. Let (0)N  and ( 1)N n +  be the 
source and the sink nodes, respectively. For 1,l k k= +  

2, , 1,n+ +L  let ( )N k  be connected to ( ).N l  The length 
between ( )N k  and ( )N l  can be calculated as the ap-
proach introduced in Claim below. 

 
Claim: Suppose that there exists an optimal schedule 
such that jobs k and l are consecutive JIT jobs. Then, it 
can be done in 

3( )O n  to determine the set of fully com-
pressed jobs and at most one partially job in { 1,k k+ +  

}2, , lL  under an optimal schedule. 
 

Proof: Let , 1 .l
k l k j lj kd p d

= +
Δ = + −∑  Note that if ,k lΔ  is 

the multiple of u, there exists no partially job in { 1,k +  
}2, ,k l+ L  under an optimal schedule. Let 

,
, ,and .k l

k l k ln nu
u

δ
Δ⎢ ⎥

= = Δ −⎢ ⎥
⎣ ⎦

 

Suppose that job α  is a partially compressed job in {k  
}1, 2, ,k l+ + L  in an optimal schedule. Henceforth, we 

reduce this case to the shortest path problem, referred to 
as ( ).SPP α  Let ,( , )k lN i nα  denote a node representing that 
the number of the fully compressed jobs is , ,k ln  when 
the jobs in { }1, 2, ,k k i+ + L  have been considered. Note 
that , .k ln n≤  Let ( , 0)N kα   and ( 1, )N l nα +  be the source 
and the sink nodes, respectively. For 1, 2, ,i k k l= + + L  

1,−  let ,( , )k lN i nα  be connected to the following nodes: 
 

i) 1i α+ <  
• ,( 1, )k lN i nα +  with length 

1
1 , 11,

0,

i
i k j k l ij kw if d p n u d

otherwise

+
+ += +

⎧ + − >⎪
⎨
⎪⎩

∑  
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• If , ,k ln n<  then ,( 1, 1)k lN i nα + +  with length 
1

1 , 11, ( 1)

0,

i
i k j k l ij kw if d p n u d

otherwise

+
+ += +

⎧ + − + >⎪
⎨
⎪⎩

∑  

 
ii) 1i α+ =  
•　 ,( 1, )k lN i nα +  with length 

1
1 , , 11,

0,

i
i k j k l k l ij kw if d p n u d

otherwise

δ+
+ += +

⎧ + − − >⎪
⎨
⎪⎩

∑  

 
iii) 1i α+ >  
•　 ,( 1, )k lN i nα +  with length 

1
1 , , 11,

0,

i
i k j k l k l ij kw if d p n u d

otherwise

δ+
+ += +

⎧ + − − >⎪
⎨
⎪⎩

∑  

 
• If , ,k ln n<  then ,( 1, 1)k lN i nα + +  with length 

1
1 , , 11, ( 1)

0,

i
i k j k l k l ij kw if d p n u d

otherwise

δ+
+ += +

⎧ + − + − >⎪
⎨
⎪⎩

∑  

 
For 1,i =  let ,( , )k lN i nα  be connected to the sink node 
with length 

 
,,

0,
k lif n n

otherwise
∞ ≠⎧
⎨
⎩

 

 
The objective is to find the shortest path between the 
source and the sink nodes. The number of nodes in 

( )SPP α  is at most 
2( )O n  and the number of the edges is 

at most 
2( )O n  since the number of edges coming from 

each node is at most 2. Thus, since the reduced graph is 
acyclic, ( )SPP α  can be solved in 

2( )O n  by the algorithm 
of (Ahuja et al., 1990). Let 

*( )x α  be the sub schedule 
corresponding to the shortest path of ( ),SPP α  and ( *v x  

)( )α  be the total cost of 
*( ).x α  Then, the one with min  

( ){ }*( ) 1, 2, ,v x k k lα α = + + L  becomes the correspond-
ing sub-schedule in an optimal schedule. This procedure 
can be done in 

3( )O n . □ 
 

Note that ( ){ }*min ( ) 1, 2, ,v x k k lα α = + + L  becomes the 
length between ( )N k  and ( ).N l  The objective is to find 
the shortest path between the source and the sink nodes. 
The number of nodes in the reduced graph is at most 

( ),O n  and the number of the edges is at most 
2( )O n  since 

the number of edges coming from each node is at most n. 
Note that since the length of each edge can be obtained 
in 

3( )O n  by the above claim, the reduced graph can be 
constructed in 

5( ).O n  Since the reduced graph is acyclic, 
the reduced problem can be solved in 

2( )O n  by the algo-
rithm of (Ahuja et al., 1990). Thus, the concave-TCTP-u 

can be solved in 
5( ).O n  The proof is complete. ■ 

4.  CONCLUDING REMARKS 

We consider a TCTP with multiple milestones and 
completely ordered jobs, in which the objective is to 
minimize the sum of the total penalty cost and the total 
compression cost. In this paper, the compression cost is 
expressed as the convex or the concave function. Since 
the computational complexities of these problems have 
been established, we consider the cases with special 
properties that the compression functions or maximal 
compression amounts of each job are identical. For the 
case with the convex cost function, we introduce a pro-
cedure to solve the problem in strongly polynomial time 
if the compression functions are identical. For the case 
with the concave cost function, we show that the prob-
lem is NP-hard even if the compression cost functions 
are identical, and it can be solved in strongly polynomial 
time if the maximal compression amounts are identical. 
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