DOI QR코드

DOI QR Code

에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite

  • 유원재 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이수민 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이성숙 (국립산림과학원 임산공학부 화학미생물과) ;
  • 김용식 (국립산림과학원 임산공학부 화학미생물과)
  • Youe, Won-Jae (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science) ;
  • Lee, Soo-Min (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science) ;
  • Lee, Sung-Suk (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science) ;
  • Kim, Yong Sik (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science)
  • 투고 : 2016.03.14
  • 심사 : 2016.04.12
  • 발행 : 2016.05.25

초록

본 연구에서는 리그닌 기반 폴리아크릴로나이트릴(polyacrylonitrile, PAN) 공중합체를 전기방사하여 나노탄소섬유 매트를 제조한 다음, 에폭시 수지를 보강하여 제조한 복합재료의 열적 특성 및 기계적 강도를 조사하였다. 나노탄소섬유 매트/에폭시 복합재는 에폭시 수지와 유사한 열분해 거동을 보이고 있는 반면에 유리전이온도는 $106.9^{\circ}C$로 순수에폭시 수지의 유리전이온도($T_g$) $90.7^{\circ}C$보다 다소 높은 경향으로 나타나 열적 안정성이 향상된 결과로 사료된다. 리그닌 기반 공중합체 및 순수 PAN으로 만든 나노탄소섬유 매트의 인장강도는 각각 7.2 및 9.4 MPa로 나타났으며, 리그닌 기반 나노탄소섬유 매트/에폭시 복합재료의 인장강도는 43.0 MPa로 나타났다. 이는 나노탄소섬유 매트/에폭시 복합재료에서 에폭시 수지 매트릭스(matrix) 내에서 나노탄소섬유가 강화제(reinforcing filler)로 작용한 효과로 약 6배의 인장강도 향상을 보였다. 인장강도 측정 후 시편의 절단면에서 나노탄소섬유 자체의 높은 인장강도(478.8 MPa) 및 에폭시 수지와의 약한 계면접착성에 기인하는 나노섬유의 뽑힘현상이 관찰되었다.

The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

키워드

참고문헌

  1. Han, J.-Y., Kim, M.-H., Kang, S.-S. 2012. A study on physical property of epoxy resin due to after-curing condition. Journal of the Korean Society of Manufacturing Technology 21(6): 976-981. https://doi.org/10.7735/ksmte.2012.21.6.976
  2. Han, S.H., Oh, H.J., Kim, S.S. 2012. Evaluation of the mechanical properties of the material of carbon fiber/polypropylene composite according to carbon fiber surface treatment. The Korean Society of Mechanical Engineers 11: 386-391.
  3. Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L. 2002. Lignin-based carbon fibers for composite fiber applications. Carbon 40: 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
  4. Kim, M.S., Kong, K.I., Kim, N.R., Park, H.W., Park, O.Y., Park, Y.-B., Jung, M.Y., Lee, S.H., Kim, S.G. 2013. Experimental and numerical study of heating characteristics of discontinuous carbon fiber-epoxy composites. Composites Research 26(1): 72-78. https://doi.org/10.7234/kscm.2013.26.1.72
  5. Lee, S.H., Kim, J.H., Ku, B.-C., Kim, J.K., Joh, H.-I. 2012. Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Advances in Chemical Engineering and Science 2: 275-282. https://doi.org/10.4236/aces.2012.22032
  6. Lee, Y.-S., Song, S.-A., Kim, W.J., Kim, S.-S., Jung, Y.-S. 2015. Fabrication and characterization of the carbon fiber composite sheets. Composite Research 28(4): 168-175. https://doi.org/10.7234/composres.2015.28.4.168
  7. Lin, L.T., Li, Y.J., Ko, F.K. 2013. Fabrication and properties of lignin based carbon nanofiber. Journal of Fiber Bioengineering and Informatics 6(4): 335-347.
  8. Rahmani, H., Najafi, S.H.M., Ashori, A. 2014. Mechanical performance of epoxy/carbon fiber laminated composites. Journal of Reinforced Plastics and Composites 33(8): 733-740. https://doi.org/10.1177/0731684413518255
  9. Seo, D.-K., Ha, N.R., Lee, J.-H., Park, H.-G., Bae, J.-S. 2015. Property evaluation of epoxy resin based aramid and carbon fiber composite materials. Textile Coloration and Finishing 27(1): 11-17. https://doi.org/10.5764/TCF.2015.27.1.11
  10. Seo, J.-H., Yoo, Y.D., Park, N.-Y., Yoon, S.-W., Lee, H.B., Han, S., Lee, S.-W., Seong, T.-Y., Lee, S.-C., Lee, K.-B., Cha, P.-R., Park, H.S., Kim, B.S., Ahn, J.-P. 2011. Superplastic deformation of defect-free Au nanowires via coherent twin propagation. NANO LETTERS 11: 3499-3502. https://doi.org/10.1021/nl2022306
  11. Seo, M.-K., Park, S.-J. 2005. Studies on thermal and dynamic viscoelastic behaviors of multiwalled carbon nanotubes-reinforced epoxy matrix composites. Korean Chemical Engineering Research 43(3): 401-406.
  12. Won, H.-J., Seong, D.-G., Lee, J.-W., Um, M.-K. 2014. A study on the effect of fiber orientation on impact strength and thermal expansion behavior of carbon fiber reinforced PA6/PPO composites. Composites Research 27(2): 52-58. https://doi.org/10.7234/composres.2014.27.2.052
  13. Yeo, J.-S., Lee, S.-W., Hwang, S.-H. 2015. Mechanical properties of natural material reinforced polypropylene bio-composites: the effects of chemical modification of lignin. Polymer (Korea) 39(6): 981-985. https://doi.org/10.7317/pk.2015.39.6.981
  14. Youe, W.-J., Lee, S.-M., Lee, S.-S., Lee, S.-H., Kim, Y.S. 2016. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. International Journal of Biological Macromolecules 82: 497-504. https://doi.org/10.1016/j.ijbiomac.2015.10.022