References
- Balakrishnan N and KateriM(2008). On the maximum likelihood estimation of parameters ofWeibull distribution based on complete and censored data, Statistics & Probability Letters, 78, 2971-2975. https://doi.org/10.1016/j.spl.2008.05.019
- Breslow N and Crowley J (1974). A large sample study of the life table and product limit estimates under random censorships, Annals of Statistics, 2, 437-453. https://doi.org/10.1214/aos/1176342705
- Chen YY, Hollander M, and Langberg NA (1982). Small-sample results for the Kaplan-Meier estimator, Journal of the American Statistical Association, 77, 141-144. https://doi.org/10.1080/01621459.1982.10477777
- Chen Z (1998). Joint estimation for the parameters of the extreme value distributions, Statistical Papers, 39, 135-146. https://doi.org/10.1007/BF02925402
- Csorgo S and Horvath L (1981). On the Koziol-Green model for random censorship, Biometrika, 68, 391-401.
- Efron B (1967). The two sample problem with censored data. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, 831-853.
- Engelhardt M and Bain LJ (1974). Some results on point estimation for the two-parameterWeibull or extreme-value distribution, Technometrics, 16, 49-56. https://doi.org/10.1080/00401706.1974.10489148
- Herd GR (1960). Estimation of reliability from incomplete data. In Proceedings of the 6th National Symposium on Reliability and Quality Control, Washington, DC, 202-217.
- Johnson LG (1964). The Statistical Treatment of Fatigue Experiments, Elsevier, Amsterdam.
- Kang SB and Han JT (2009). Goodness-of-fit test for theWeibull distribution based on multiply type-II censored samples, Communications for Statistical Applications and Methods, 16, 349-361. https://doi.org/10.5351/CKSS.2009.16.2.349
- Kaplan EL and Meier P (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
- Kim N (2014). Approximate MLE for the scale parameter of the generalized exponential distribution under random censoring, Journal of the Korean Statistical Society, 43, 119-131. https://doi.org/10.1016/j.jkss.2013.03.006
- Koziol JA and Green SB (1976). A Cramer-von Mises statistic for randomly censored data, Biometrika, 63, 465-474.
- Kundu D (2007). On hybrid censored Weibull distribution, Journal of Statistical Planning and Inference, 137, 2127-2142. https://doi.org/10.1016/j.jspi.2006.06.043
- Meier P (1975). Estimation of a distribution function from incomplete observations. In J. Gani (Ed), Perspectives in Probability and Statistics (pp. 67-87), Academic Press, New York.
- Pareek B, Kundu D, and Kumar S (2009). On progressively censored competing risks data forWeibull distributions, Computational Statistics & Data Analysis, 53, 4083-4094. https://doi.org/10.1016/j.csda.2009.04.010
- Tableman M and Kim JS (2003). Survival Analysis Using S: Analysis of Time-to-Event Data, CRC Press, Boca Raton, FL.
Cited by
- Closeness of Lindley distribution to Weibull and gamma distributions vol.24, pp.2, 2017, https://doi.org/10.5351/CSAM.2017.24.2.129
- Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.043