물 공급시설의 지진재해 신뢰성 제고를 위한 관로 최적 설계 프로그램-REVAS.NET_Design

  • 유도근 (고려대학교 공과대학 방재과학기술연구소) ;
  • 정동휘 (고려대학교 공과대학 방재과학기술연구소) ;
  • 강두선 (경희대학교 사회기반시스템공학과) ;
  • 김중훈 (고려대학교 건축사회환경공학부)
  • Published : 2016.04.15

Abstract

Keywords

References

  1. 국민안전처 (2012). 2012년도 기존 공공시설물 내진보강대책 추진결과 공시.
  2. 유도근, 강두선, 김중훈 (2013) 상수관망 지진재해 신뢰성 평가 모형 - REVAS.NET. 한국수자원학회지-물과 미래, 제46권, 제2호, pp. 64-72.
  3. 유도근, 강두선, 김중훈 (2014) 상수관망 시스템의 지진재해 위험도 산정 프로그램 개발. 2014년 한국방재학회 학술발표회.
  4. 유도근, 강두선, 김중훈 (2015) 상수도시스템 정보를 이용한 지진재해 신뢰성 산정 모형개발. 한국스마트워터그리드학회 2015년도 춘계학술대회.
  5. 백천우 (2002) ReHS를 이용한 상수관망 최적 개량 의사결정 시스템의 개발. 석사학위논문, 고려대학교.
  6. 한국상하수도협회 (2010). 상수도시설기준. 환경부.
  7. Ballantyne, D. B., Berg, E., Kennedy, J., Reneau, R, and Wu, D. (1990) Earthquake Loss Estimation Modeling of the Seattle Water System. Technical Report, Kennedy/Jenks/Chilton, Federal Way, WA.
  8. Bonneau, A. L. (2008) Water Supply Performance During Earthquakes and Extreme Events. Ph D. thesis, School Civil and Environmental Engineering, Cornell University, Ithaca, New York.
  9. Bonneau, A. L. and O'Rourke, T. D. (2009) Water Supply Performance During Earthquakes and Extreme Events, Technical Report MCEER-09-0003, University of Buffalo, State University of New York, New York.
  10. Eguchi, R. T., Taylor, C. E., and Hasselman, T. K. (1983) Earthquake Vulnerability Models for Water Supply Components. Technical Report No. 83-1396-2c. Prepared for the National Science Foundation, J. H. Wiggins Company, Redondo Beach, CA.
  11. Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001) A New Heuristic Optimization Algorithm: Harmony Search. Simulation, Vol. 76, No. 2, pp. 60-68. https://doi.org/10.1177/003754970107600201
  12. GIRAFFE (2008) GIRAFFE User's Manual. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY.
  13. Hall, W. and Newmark, N. (1977) Seismic Design Criteria for Pipelines and Facilities. Current State of Knowledge of Lifeline Earthquake Engineering. ASCE, New York, pp. 18-34.
  14. Hwang, H., Lin, H., and Shinozuka, M. (1998) Seismic Performance Assessment of Water Delivery Systems. Journal of Infrastructure Systems, Vol. 4, pp. 118-125
  15. Hwang, R. N. and Lysmer, J. (1981) Response of Buried Structures to Traveling Waves. Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. GT2, pp. 183-200.
  16. Kim, J. H., Geem, Z. W., and Kim, E. S. (2001) Parameter Estimation of the Nonlinear Muskingum Model using Harmony Search. Journal of the American Water Resources Association, Vol. 37, No. 5, pp. 1131-1138. https://doi.org/10.1111/j.1752-1688.2001.tb03627.x
  17. Kim, J. H., Baek, C. W., Jo, D. J., Kim, E. S., and Park, M. J. (2004) Optimal planning model for rehabilitation of water networks. Water Science & Technology: Water Supply, Vol. 4, No. 3, pp. 133-147.
  18. K-water (2010) Construction Cost Estimation for Water Distribution System. Korea Water Resources Corporation, Report.
  19. Liu, G.Y., Chung, L.L., Yeh, C.H., Wang, R.Z., Chou, K.W., Hung, H.Y., Chen, S.A., Chen, Z.H., and Yu, S.-H. (2010) A Study on Pipeline Seismic Performance and System Post-Earthquake Response of Water Utilities (1/2). Technical Report MOEA-WRA-0990095, Water Resource Agency, MOEA, Taipei.
  20. Liu, G.Y., Chung, L.L., Huang, C.W., Yeh, C.H., Chou, K.W., Hung, H.Y., Chen, Z.H., Chou, C.H., and Tsai, L.C. (2011) A Study on Pipeline Seismic Performance and System Post-Earthquake Response of Water Utilities (2/2). Technical Report MOEA-WRA-1000090, Water Resource Agency, MOEA, Taipei.
  21. Markov, I., Mircea G., and O'Rourke, T. (1994) An Evaluation of Seismic Serviceability of Water Supply Networks with Application to the San Francisco Auxiliary Water Supply System.
  22. Rossman, L. A. (2000). EPANET 2 User's Manual. EPA (U.S. Environmental Protection Agency), Cincinnati, OH.
  23. Shi, P. (2006) Seismic Response Modeling of Water Supply Systems. Ph.D. Dissertation, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY.
  24. Shi, P., O'Rourke, T. D., and Wang, Y. (2006) Simulation of Earthquake Water Supply Performance. Proceeding of 8th National Conference on Earthquake Engineering, Paper No. 8NCEE-001295, EERI, Oakland, CA.
  25. Shinozuka, M, Tan, R. Y. and Toike, T. (1981) Serviceability of Water Transmission Systems under Seismic Risk, Lifeline Earthquake Engineering, the Current State of Knowledge, ASCE, New York, NY.
  26. Shinozuka, M., Hwang, H., and Murata, M. (1992) Impact on Water Supply of a Seismically Damaged Water Delivery System, Lifeline Earthquake Engineering in the Central and Eastern U.S., TCLEE Monograph 5, pp. 43-57.
  27. Shinozuka, M., Rose, A., and Eguchi, R. T. (1998) Engineering and Socioeconomic Impacts of Earthquakes. Monograph Series 2. Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY.
  28. Wang, Y. (2006) Seismic Performance Evaluation of Water Supply Systems. Ph.D. Dissertation, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY.
  29. Wang, Y., and O'Rourke, T. D. (2007) Characterizations of seismic risk in Los Angeles water supply system. China-Japan-US Symposium on Lifeline Earthquake Engineering.
  30. Whitman, R. V. and Hein, K. H. (1977) Damage Probability for a Water Distribution System, Proceedings of the ASCE TCLEE Specialty Conference on Lifeline Earthquake Engineering, August 31, pp. 410-423.
  31. Wright, J. P., and Takada, S. (1980) Earthquake Response Characteristics of Jointed and Continuous Buried Lifelines. Grant Report No. 15, Prepared for National Science Foundation by Weidlinger Associates, Grant No. PFR 78-15049.
  32. Yoo, D. G., Jung, D., Kang, D., Kim, J. H., and Lansey, K (2016a) Seismic Hazard Assessment Model for Urban Water Supply Networks." Journal of Water Resources Planning and Management, ASCE, Vo. 142, No. 2, DOI: 10.1061/(ASCE)WR.1943-5452.0000584.
  33. Yoo, D. G., Kang, D. Kim, J. H. (2016b) Optimal Design of Water Supply Networks for Enhancing Seismic Reliability. Reliability Engineering & System Safety. Vol. 146, No. 2, 79-88.