DOI QR코드

DOI QR Code

하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles

  • 권화빈 (창원대학교 기계공학부) ;
  • 박희성 (창원대학교 기계공학부)
  • Kwon, Hwabhin (Dept. of Mechanical Engineering, Changwon Nat'l Univ.) ;
  • Park, Heesung (Dept. of Mechanical Engineering, Changwon Nat'l Univ.)
  • 투고 : 2015.12.07
  • 심사 : 2016.03.20
  • 발행 : 2016.06.01

초록

리튬 이온 배터리는 높은 에너지 밀도와 안정적인 충전/방전 특성을 내재하고 있어 하이드리드 및 전기자동차에 보편적으로 사용된다. 리튬 이온 배터리의 효율은 배터리 자체의 온도 특성에 직접적인 영향을 받으므로, 열을 효율적으로 냉각하는 기술이 요구된다. 본 논문에서는 수냉식 배터리 냉각 시스템의 냉각 성능과 펌프 소모동력에 관한 전산유체해석을 수행하였다. 이를 위해 배터리 셀의 냉각수 유량 및 냉각 채널의 특성에 따른 냉각 성능을 수치적으로 예측하였다. 이를 바탕으로 250개 배터리 셀을 기준으로 유량 및 차압에 의한 소모동력을 계산하였다. 이러한 연구는 차세대 하이브리드 및 전기자동차의 시간에 따른 배터리의 온도 변화 및 충/방전 효율 최적화 기술에 적용할 수 있는 기초 연구로 활용될 수 있을 것으로 기대된다.

Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.

키워드

참고문헌

  1. Jeong, T., Sun, J., Kim, S. and Noh, Y., 2014, "Analysis of the Cooling Performance and Characteristic Using Lithium-ion Battery for Eco-friendly Vehicle," KSAE sector General Conference 2014, pp. 1192-11929.
  2. Kwon, M. S., 2007, "Development Status and Trends of Environmental Friendly Vehicles," KSAE HEV and FCEV Workshop, pp. 1-11.
  3. Oh, H. and Park, S., 2014, "Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems," Transactions of KSAE, Vol. 22, No. 3, pp.179-185. https://doi.org/10.7467/KSAE.2014.22.3.179
  4. Park, J. and Lee, K., 2009, "The Safety of Lithium Ion Polymer Battery System for Hybrid Electric Vehicle," Auto Journal KSAE, Vol. 31, No. 1, pp. 44-48.
  5. Jarrett, A. and Kim, I. Y., 2011, "Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance," Journal of Power Sources, Vol. 196, No. 23, pp. 10359-10368 https://doi.org/10.1016/j.jpowsour.2011.06.090
  6. Mahamud, R. and Park, C., 2011, "Reciprocationg Air Flow for Li-ion Battery Thermal Management to Improve Temperature Uniformity," Journal of Power Source, Vol. 196, pp. 5685-5696. https://doi.org/10.1016/j.jpowsour.2011.02.076
  7. Tong, W., Somasundaram, K., Birgersson, E., Munjumdar, A. S. and Christopher, Y., 2015, "Numerical Investigation of Water Cooling for a Lithium-ion Bipolar Battery Pack," International Journal of Thermal Science, Vol. 94, pp. 259-269. https://doi.org/10.1016/j.ijthermalsci.2015.03.005
  8. Yuksel, T. and Michal, J., 2012, "Development of a Simulation Model to Analyze the Effect of Thermal Management on Battery Life," SAE Technical Paper, No. 2012-01-0671.
  9. Teng, H., Ma, Y., Yeow, K. and Thelliez, M., 2011, "An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up," SAE Int. J. Passeng. Cars-Mech. Syst., Vol. 4, Issue 3, pp. 1343-1357. https://doi.org/10.4271/2011-01-2249
  10. Javani, N., Dincer, I., Naterer, G. F. and Rohrauer, G. L., 2014, "Modeling of Passive Thermal Management for Electric Vehicle Battery Packs with PCM Between Cells," Applied Thermal Engineering, Vol. 73, issue 1, pp. 307-316 https://doi.org/10.1016/j.applthermaleng.2014.07.037
  11. Park, H., 2013, "A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles," Journal of Power Sources, Vol. 239, pp. 30-36. https://doi.org/10.1016/j.jpowsour.2013.03.102
  12. Sonage, B. K. and Mohanan, P., 2015, "Miniaturization of Automobile Radiator by Using Zinc-water and Zinc Oxide-water Nanofluid," J. Mechanical Science and Technology, Vol. 29, pp. 2177-2185. https://doi.org/10.1007/s12206-015-0438-x
  13. Kim, G. H. and PESARAN, A. A., 2015, "Battery Thermal Management Design Modeling," 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition, Yokohama, Japan.
  14. Yu, S. H., Sohn, S., Nam, J. H. and Kim, C. J., 2009, "Numerical Study to Examine the Performance of Multi-pass Serpentine Flow-fields for Cooling Plates in Polymer Electrolyte Membrane Fuel Cells," J. Power Sources, Vol.194, pp. 697-703. https://doi.org/10.1016/j.jpowsour.2009.06.025
  15. Murashko, K. A., Mityakov, A. V., Pyrhonen, J., Mityakov, V. Y. and Sapozhnikov, S. S., 2014, "Thermal Parameters Determination of Battery Cells by Local Heat Flux Measurements," J. Power Sources, Vol. 271, pp. 48-54. https://doi.org/10.1016/j.jpowsour.2014.07.117
  16. Ryu, T., Lee, E. and Choi, J., 1999, "Comparison of Ngine and Vehicle Cooling Performances with Ethylene Glycol Coolant and Prophylene Glycol Coolant," Journal of KSAE, Vol. 7, pp. 193-201.
  17. Lee, J. H. and Yoo, D. W., 2014, "A Study on the Stress and Endurance Life Depending on the Load and Temperatures for Automobile spindle," Trans. Korean Soc. Mech. Eng. B, pp. 329-330.
  18. Rezania, A., Rosendahl, L. A. and Andreasen, S. J., 2012, "Experimental Investigation of Thermoelectric Power Generation Versus Coolant Pumping Power in a Microchannel Heat Sink," International Communications in Heat and Mass Transfer, Vol. 39, issue 8, pp. 1054-1058. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.010
  19. Li, J. and Mazzola, M. S., 2013, "Accurate Battery Pack Modeling for Automotive Applications," J. Power Sources, Vol. 237, pp. 215-228. https://doi.org/10.1016/j.jpowsour.2013.03.009
  20. Choi, J. Y., Park, S. Y., Sung, S. Y., Hahn, C. and Ha, B., 2013, "Analysis of Teardown Benchmark About Nissan Leaf Electric Vehicle," KSAE Sector General Conference, pp. 1746-1746.