DOI QR코드

DOI QR Code

Evaluation of Air Pollution Monitoring Networks in Seoul Metropolitan Area using Multivariate Analysis

다변량분석법을 활용한 수도권지역의 대기오염측정망 평가

  • Choi, Im-Jo (Ulsan Institute of Health & Environment) ;
  • Jo, Wan-Keun (Department of Environmental Engineering, Kyungpook National University) ;
  • Sin, Seung-Ho (Department of Health Environment, Daegu Health College)
  • 최임조 (울산 보건환경연구원) ;
  • 조완근 (경북대학교 환경공학과) ;
  • 신승호 (대구보건대학교 보건환경과)
  • Received : 2016.02.22
  • Accepted : 2016.04.05
  • Published : 2016.05.31

Abstract

The adequacy of urban air quality monitoring networks in the largest metropolitan city, Seoul was evaluated using multivariate analysis for $SO_2$, $NO_2$, CO, PM10, and $O_3$. Through cluster analysis for 5 air pollutants concentrations, existing monitoring stations are seen to be clustered mostly by geographical locations of the eight zones in Seoul. And the stations included in the same cluster are redundantly monitoring air pollutants exhibiting similar atmospheric behavior, thus it can be seen that they are being operated inefficiently. Because monitoring stations groups representing redudancy were different depending on measurement items and several pollutants are being measured at the same time in each air monitoring station, it is seemed to be not easy to integrate or transmigrate stations. But it may be proposed as follows : the redundant stations can be integrated or transmigrated based on ozone of which measures are increasing in recent years and alternatively the remaining pollutants other than the pollutant exhibiting similar atmospheric behavior with nearby station's can be measured. So it is considered to be able to operate air quality monitoring networks effectively and economically in order to improve air quality.

Keywords

References

  1. Choi, S. W., Lee, J. B., 2011, Feasibility study for the location of air quality monitoring network in daegu area, J. Environ. Sci. int., 20(1), 81-91. https://doi.org/10.5322/JES.2011.20.1.81
  2. Gramsch, E., Cereceda-Balic, F., Oyola, P., Von Baer, D., 2006, Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and Ozone data, Atmospheric Environment, 40, 5464-5475. https://doi.org/10.1016/j.atmosenv.2006.03.062
  3. Jeon, M. G., 1998, Study of the optimal allocations of air pollution monitoring stations in kyonggi-Do, Kyonggi Development Institute, 98-08, 82-83.
  4. Kim, C. R., 2012, SAS data analysis, 21 Century Publishing, 363-418.
  5. Kim, H. J., Jo, W. G., 2012, Assessment of PM10 monitoring stations in daegu using GIS interpolation, Korean Society for Geospatial Information System, 20(2), 3-4.
  6. Kim, Y. J., Kim, H. G., 2007, Environmental statistics, Donghwa technology Publishing, 164-177.
  7. Korea Environment Corporation (KECO), 2016, http://www.airkorea.or.kr.
  8. Korea Environment Corporation (KECO), 2010, Air pollution monitoring stations metrological location Handbook, 1-2.
  9. Lu, W. Z., He, H. D., Dong, L. Y., 2010, Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis, Building and Environment, 46, 577-583.
  10. Ministry of Environment, 2011, Air pollution monitoring network installation and operation instructions, 4-5, 30-32.
  11. Na, Y. W., Kim, J. S., Choi, B. G., 2005, The Allocation analysis of TMS using GIS, Korean Society for Geospatial Information System, 13(1), 82-83.
  12. Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., Martins, F. G., 2008, Management of air quality monitoring using principal component and cluster analysis-Part I : $SO_2$ and $PM_{10}$, Atmospheric Environment, 42, 1249-1260. https://doi.org/10.1016/j.atmosenv.2007.10.044
  13. Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., Martins, F. G., 2008, Management of air quality monitoring using principal component and cluster analysis-Part II : CO, $NO_2$ and $O_3$, Atmospheric Environment, 42, 1261-1274. https://doi.org/10.1016/j.atmosenv.2007.10.041
  14. Yu, J. H., Kim, H. R., 2011, An Evaluation on redundancy of air pollution monitoring stations in Seoul, Korean Urban Management Association, 24(4), 299-313.