DOI QR코드

DOI QR Code

초등학교 건축물의 생애주기 에너지사용량 및 이산화탄소 배출량 평가

Evaluation of Life Cycle Energy Consumption and CO2 Emission of Elementary School of Buildings

  • Ji, Changyoon (Department of Architectural Engineering, Yonsei University) ;
  • Hong, Taehoon (Department of Architectural Engineering, Yonsei University) ;
  • Jeong, Jaewook (Department of Architectural Engineering, Yonsei University)
  • 투고 : 2016.02.16
  • 심사 : 2016.02.26
  • 발행 : 2016.05.31

초록

본 연구에서는 LCA 모델을 이용하여 8개 초등학교 건축물의 생애주기 에너지사용량 및 이산화탄소 배출량을 평가 분석하였다. 이를 위하여, 자재생산, 자재운송, 시공, 운영, 해체 폐기단계를 포함하는 건축물 생애주기에서의 에너지사용량 및 이산화탄소 배출량을 평가할 수 있는 LCA 기반의 평가모델을 정의하고, 모델을 이용하여 사례 건축물을 평가하였다. 40년의 운영기간을 가정하여 평가한 결과, 내재에너지(즉, 자재생산, 자재운송, 시공단계 에너지사용량의 합), 운영에너지, 해체 폐기에너지는 평균적으로 2,279, 11,182, 228 Mcal/m2로 산출되었다. 각 단계별 평균 이산화탄소 배출량은 604, 2,708, 60 kg-CO2/m2로 산출되었다. 평가결과는 생애주기 에너지사용량 및 이산화탄소 배출량의 약 17%가 자재생산, 자재운송, 시공단계에서 발생한다는 사실을 보여준다. 따라서 건축물의 에너지사용량 및 이산화탄소 배출량 감축 목표를 달성하기 위해서는 내재에너지 및 이산화탄소 배출량이 반드시 고려되어야 할 것이다. 게다가, 운영에너지는 지역에 따라 확연하게 구분되는 반면, 내재에너지는 지역에 따른 차이가 없는 것으로 나타났다. 따라서 운영단계의 에너지 사용량 편차를 줄이기 위해서는 지역에 따라 보다 상세하게 구분된 단열 기준이 제시되어야 할 것이다.

This study investigates and analyzes the total amount of energy consumption and $CO_2$ emission during the material manufacturing, transportation, construction, operation, and disposal phases of eight elementary school buildings in South Korea. Toward this ends, the hybrid LCA model is proposed. The life cycle energy consumption and $CO_2$ emission of eight case buildings are assessed using the hybrid LCA model with an assumption that the operation period is 40 years. As a result, the embodied(sum of the energy consumption in the material manufacturing, transportation and construction phases), operational and disposal energy were 2,279, 11,182, $228Mcal/m^2$, respectively, on average. The average embodied, operational, and disposal $CO_2$ emission were 604, 2,708, 60 kg-$CO_2/m^2$, respectively, on average. This result indicates that about 17% of life cycle energy (or $CO_2$ emission) is consumed in the material manufacturing, transportation and construction phases. Thus, it is necessary to consider the embodied energy and $CO_2$ emission to reduce the life cycle energy and $CO_2$ emission of school buildings. In addition, while the insulation standard of building have been provided based on the climate zone, energy consumption in operation phase still varied depending on the regions in this study. Thus, the insulation standard of building needs to be improved through considering the climate of regions in detail.

키워드

참고문헌

  1. Chang Y., Ries R.J., and Lei S. (2012). "The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model." Energ. Buildings., 55, pp. 790-798. https://doi.org/10.1016/j.enbuild.2012.10.019
  2. Gustavsson L., Joelsson A., and Sathre R. (2010). "Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building." Energ. Buildings, 42, pp. 230-242. https://doi.org/10.1016/j.enbuild.2009.08.018
  3. Hong T., Jeong K., and Ji C., (2014a). "Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment." Korean Journal of Construction Engineering and Management, KICEM, 15(3), pp. 55-62.
  4. Hong T., Ji C., Jang M., and Park H. (2014b). "Assessment Model for Energy Consumption and Greenhouse Gas Emissions during the Construction Phase." J. Manage. Eng., 30(2), pp. 226-235. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000199
  5. Hong T., and Ji C. (2014). "Comparison of the $CO_2$ Emissions of Buildings using Input-Output LCA Model and Hybrid LCA Model."Korean Journal of Construction Engineering and Management, KICEM, 15(4), pp. 119-127. https://doi.org/10.6106/KJCEM.2014.15.4.119
  6. Hong T., Koo C., and Kim H. (2012a). "A Decision Support Model for Improving a Multi-Family Housing Complex based on $CO_2$ Emission from Electricity Consumption." J. Environ. Manage., 112(15), pp. 67-78. https://doi.org/10.1016/j.jenvman.2012.06.046
  7. Hong T., Koo C., and Jeong K. (2012). "A Decision Support Model for Reducing Electric Energy Consumption in Elementary School Facilities." Appl. Energ., 95(7), pp. 253-266. https://doi.org/10.1016/j.apenergy.2012.02.052
  8. ISO 14040 (2006). Environmental Management-Life Cycle Assessment-Principles and Framework. International Organization for Standardization.
  9. Jang M., Hong T., and Ji C. (2015). "Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea." Environ. Impact Asses., 50, pp. 143-155. https://doi.org/10.1016/j.eiar.2014.09.010
  10. Jeong K., Ji C., Koo C., Hong T., and Park H. (2015). "A Model for predicting the Environmental Impact of educational facilities in the project planning phase." J. Clean. Prod., 107, pp. 538-549. https://doi.org/10.1016/j.jclepro.2014.01.027
  11. Kim T., Lee K., and Hong W. (2012). "Energy consumption characteristics of the elementary schools in South Korea." Energ. Buildings, 54, pp. 480-489. https://doi.org/10.1016/j.enbuild.2012.07.015
  12. Korea Energy Economics Institute (KEEI) (2015). 2014 Energy Consumption Survey. Korea Energy Economics Institute, Ministry of Trade, Industry & Energy.
  13. Lee K., Tae S., and Shin S. (2009). "Development of a Life Cycle Assessment Program for building (SUSBLCA) in South Korea." Renew. Sust. Energ. Rev., 13(8), pp. 1994-2002. https://doi.org/10.1016/j.rser.2009.01.002
  14. Lee M., Kim W., Lee W., and Lee W. (2012). "A Study about Reduction Rates of Building Energy Demand for a Detached House according to Building Energy Efficient Methods." Journal of the Architectural Institute of Korea, 28(5), pp. 275-282.
  15. Ministry of Land, Infrastructure and Transport (MOLIT) (2014). First Green Building Master plan in South Korea. Ministry of Land, Infrastructure and Transport.
  16. Ramesh T., Prakash R., and Shukla K., (2010). "Life cycle energy analysis of buildings: An overview." Energ. Buildings, 42, pp. 1592-1600. https://doi.org/10.1016/j.enbuild.2010.05.007

피인용 문헌

  1. Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea vol.10, pp.8, 2018, https://doi.org/10.3390/su10082820