DOI QR코드

DOI QR Code

Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process

전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화

  • Lee, Hongmin (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Sangsun (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Hwang, Sungwon (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Jin, Dongbok (Process Technology Team, SK Energy)
  • 이홍민 (인하대학교 화학.화학공학과 융합대학원) ;
  • 이상선 (인하대학교 화학.화학공학과 융합대학원) ;
  • 황성원 (인하대학교 화학.화학공학과 융합대학원) ;
  • 진동복 (SK에너지 공정기술팀)
  • Received : 2015.09.09
  • Accepted : 2016.01.06
  • Published : 2016.06.01

Abstract

Electro oxidation system was designed in this study for the reduction of COD (Chemical Oxygen Demand) from high-strength wastewater, produced during refinery turnaround period. First, BDD (Boron Doped Diamond) electrode was synthesized and electro oxidation system of actual industrial wastewater was developed by adopting the synthesized BDD electrode. The experiments were carried out under various operating conditions under certain range of current density, pH, electrolyte concentration and reaction time. Secondly, reaction kinetics were identified based on the experimental results, and the kinetics were embedded into a genetic mathematical model of the electro oxidation system. Lastly, design and operating parameters of the process were optimized to maximize the efficiency of the pretreatment system. The coefficient of determination ($R^2$) of the model was found to be 0.982, and it proved high accuracy of the model compared with experimental results.

본 연구에서는 정유산업의 유지 및 보수기간에 배출되는 고농도폐수의 COD (Chemical Oxygen Demand)를 효과적으로 제거하기 위해 전기산화공법을 적용하였다. 우선 산업에서 배출되는 실제 폐수를 처리하기 위하여 BDD전극을 개발하고, 개발된 전극을 이용하여 전류밀도, pH, 전해질농도, 반응시간 등과 같은 다양한 운전조건하에 실험을 진행하였다. 둘째, 이러한 실험결과를 이용하여 전기분해의 kinetic parameter를 산출한 후에, 이를 토대로 전기산화 처리설비를 수학적으로 모델링 하였다. 마지막으로, 기존에 정상운전 조건 시 사용하던 저 농도 폐수를 처리하는 공정의 유입조건에 맞추기 위하여 전기산화 처리설비의 설계 및 운전의 다양한 변수들을 최적화함으로써 보다 효율적인 폐수 전처리 시스템을 개발하였다. 본 연구를 통해 개발된 모델의 결정계수($R^2$)는 0.982로 상당히 작은 오차범위를 보여줌으로써 모델의 높은 정확도를 입증하였다.

Keywords

References

  1. Lee, S. H., Moon, H. J. and Kim, Y. M., "Enhancement of Treatment Efficiency for Dyeing Wastewater by Fenton Oxidation Methods," J. of KSEE, 25(1), 87-93(2003).
  2. Kim, D. S. and Park, Y. S., "Electrochemical Degradation of Phenol by Electro-Fenton Process," J. Env. Hlth. Sci., 35(3), 201-208(2009).
  3. Juttner, K., Galla, U. and Schmieder, H., "Electrochemical Approaches to Environmental Problems in the Process Industry," Electrochimica Acta, 45(15), 2575-2594(2000). https://doi.org/10.1016/S0013-4686(00)00339-X
  4. Kim, D. S. and Park, Y. S., "Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode," J. Env. Hlth. Sci., 35(4), 295-303(2009).
  5. Chen, X., Gao, F. and Chen, G., "Comparison of Ti/BDD and Ti/$SnO_2$-$Sb_2O_5$ Electrodes for Pollutant Oxidation," Journal of Applied Electrochemistry, 35(2), 185-191(2005). https://doi.org/10.1007/s10800-004-6068-0
  6. Lee, J. Y., Lee, J. K., Uhm. S. H. and Lee, H. J., "Electrochemical Technologies : Water Treatment," Appl. Chem. Eng., 22(3), 235-242(2011).
  7. Sharifian, H. and Kirk, D., "Electrochemical Oxidation of Phenol," Journal of the Electrochemical Society, 133(5), 921-924 (1986). https://doi.org/10.1149/1.2108763
  8. Correa-Lozano, B., Comninellis, C. and De Battisti, A., "Electrochemical Properties of Ti/$SnO_2$-$Sb_2O_5$ Electrodes Prepared by the Spray Pyrolysis Technique," Journal of Applied Electrochemistry, 26(7), 683-688(1996). https://doi.org/10.1007/BF00241508
  9. Tenne, R., Patel, K., Hashimoto, K. and Fujishima, A., "Efficient Electrochemical Reduction of Nitrate to Ammonia Using Conductive Diamond Film Electrodes," Journal of Electroanalytical Chemistry, 347(1), 409-415(1993). https://doi.org/10.1016/0022-0728(93)80105-Q
  10. Carey, J. J., Christ, J. C. S. and Lowery, S. N., US Patent 5,399,247 (1995).
  11. Panizza, M., Michaud, P., Cerisola, G. and Comninellis, C., "Anodic Oxidation of 2-naphthol at Boron-doped Diamond Electrodes," Journal of Electroanalytical Chemistry, 507(1), 206-214(2001). https://doi.org/10.1016/S0022-0728(01)00398-9
  12. Panizza, M., Kapalka, A. and Comninellis, C., "Oxidation of Organic Pollutants on BDD Anodes Using Modulated Current Electrolysis," Electrochimica Acta, 53(5), 2289-2295(2008). https://doi.org/10.1016/j.electacta.2007.09.044
  13. Canizares, P., Garcia-Gomez, J., Lobato, J. and Rodrigo, M. A., "Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes," Industrial & Engineering Chemistry Research, 43(9), 1915-1922(2004). https://doi.org/10.1021/ie0341294
  14. Mascia, M., Vacca, A., Palmas, S. and Polcaro, A. M., "Kinetics of the Electrochemical Oxidation of Organic Compounds at BDD Anodes: Modelling of Surface Reactions," Journal of Applied Electrochemistry, 37(1), 71-76(2007). https://doi.org/10.1007/s10800-006-9217-9
  15. Baek, J. B. and Lee, G. B., "Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process," Korean Chem. Eng. Res., 52(5), 564-573(2014). https://doi.org/10.9713/kcer.2014.52.5.564
  16. Comninellis, C. and Pulgarin, C., "Electrochemical Oxidation of Phenol for Wastewater Treatment Using $SnO_2$, Anodes," Journal of Applied Electrochemistry, 23(2), 108-112(1993). https://doi.org/10.1007/BF00246946
  17. Pulgarin, C., Adler, N., Peringer, P. and Comninellis, C., "Electrochemical Detoxification of a 1,4-benzoquinone Solution in Wastewater Treatment," Water Research, 28(4), 887-893(1994). https://doi.org/10.1016/0043-1354(94)90095-7
  18. Martinez-Huitle, C. A. and Andrade, L. S., "Electrocatalysis in Wastewater Treatment: Recent Mechanism Advances," Quimica Nova, 34(5), 850-858(2011). https://doi.org/10.1590/S0100-40422011000500021
  19. Mraz, R. and Krysa, J., "Long Service Life $IrO_2$/$Ta_2O_5$ Electrodes for Electroflotation," Journal of Applied Electrochemistry, 24(12), 1262-1266(1994). https://doi.org/10.1007/BF00249891
  20. Chen, G., "Electrochemical Technologies in Wastewater Treatment," Separation and Purification Technology, 38(1), 11-41(2004). https://doi.org/10.1016/j.seppur.2003.10.006
  21. Kotz, R., Stucki, S. and Carcer, B., "Electrochemical Waste Water Treatment Using High Overvoltage Anodes. Part I: Physical and Electrochemical Properties of $SnO_2$ Anodes," Journal of Applied Electrochemistry, 21(1), 14-20(1991). https://doi.org/10.1007/BF01103823
  22. Marincic, L. and Leitz, F., "Electro-oxidation of Ammonia in Waste Water," Journal of Applied Electrochemistry, 8(4), 333-345(1978). https://doi.org/10.1007/BF00612687
  23. Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G. and De Battisti, A., "Electrochemical Incineration of Glucose as a Model Organic Substrate. I. Role of the Electrode Material," Journal of the Electrochemical Society, 146(6), 2175-2179(1999). https://doi.org/10.1149/1.1391909
  24. Kirk, D., Sharifian, H. and Foulkes, F., "Anodic Oxidation of Aniline for Waste Water Treatment," Journal of Applied Electrochemistry, 15(2), 285-292(1985). https://doi.org/10.1007/BF00620944
  25. Cossu, R., Polcaro, A. M., Lavagnolo, M. C., Mascia, M., Palmas, S. and Renoldi, F., "Electrochemical Treatment of Landfill Leachate: Oxidation at Ti/$PbO_2$ and Ti/$SnO_2$ Anodes," Environmental Science & Technology, 32(22), 3570-3573(1998). https://doi.org/10.1021/es971094o
  26. Rodgers, J. D., Jedral, W. and Bunce, N. J., "Electrochemical Oxidation of Chlorinated Phenols," Environmental Science & Technology, 33(9), 1453-1457(1999). https://doi.org/10.1021/es9808189
  27. Choi, J. Y., "Application of Boron-doped Diamond Anodes to Electrochemical Oxidation of Organic Pollutants," Master's thesis, Korea Advanced Institute of Science and Technology, 2008.
  28. Park, H. E. and Row, K. H., "Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology," Applied Chemistry for Engineering, 24(3), 299-304(2013).
  29. Kim, D. S. and Park, Y. S., "Application of the Response Surface Methodology and Process Optimization to the Electrochemical Degradation of Rhodamine B and N,N-Dimethyl-4-nitrosoanilin Using a Boron-doped Diamond Electrode," J. Env. Hlth. Sci., 36(4), 313-322(2010).
  30. Aslan, N., "Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling and Optimization of a Multi-gravity Separator for Chromite Concentration," Powder Technology, 185(1), 80-86(2008). https://doi.org/10.1016/j.powtec.2007.10.002
  31. Kim, D. S. and Park, Y. S., "Removal of Rhodamine B using Electrocoagulation Process," J. Env. Hlth. Sci., 31(12), 1081-1088(2009).
  32. Merzouk, B., Gourich, B., Sekki, A., Madani, K., Vial, C. and Barkaoui, M., "Studies on the Decolorization of Textile Dye Wastewater by Continuous Electrocoagulation Process," Chemical Engineering Journal, 149(1), 207-214(2009). https://doi.org/10.1016/j.cej.2008.10.018

Cited by

  1. Technology development for the reduction of NOx in flue gas from a burner-type vaporizer and its application vol.34, pp.6, 2017, https://doi.org/10.1007/s11814-017-0029-x
  2. 하수방류수 내 TOC 제거를 위한 전기분해공정의 최적 조건 vol.18, pp.4, 2017, https://doi.org/10.14481/jkges.2017.18.4.23