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ON THE IRREDUCIBILITY OF SUM OF TWO RECIPROCAL

POLYNOMIALS

Minsang Bang and DoYong Kwon

Abstract. For a certain kind of reciprocal polynomials P (x), Q(x) ∈
Z[x], their sums are considered. We demonstrate that the Mahler measure
of polynomials plays a role to prove the irreducibility of the sums over
the field of rationals.

1. Introduction and preliminaries

A polynomial f(x) ∈ R[x] satisfying xnf(x−1) = f(x) (resp. xnf(x−1) =
−f(x)) is said to be a reciprocal (resp. an anti-reciprocal) polynomial of order
n. From the definition, it readily follows that f(x) = anx

n + an−1x
n−1 + · · ·+

a0 ∈ R[x] is reciprocal (resp. anti-reciprocal) if and only if ak = an−k (resp.
ak = −an−k) for every k = 0, 1, . . . , n. We note here that deg f ≤ n and the
equality holds if and only if an 6= 0. In the case of deg f < n, some power of x
divides f(x).

The irreducibility of reciprocal polynomials with integer coefficients was in-
vestigated in the literature, e.g., by Dickson [2] and by Kleiman [3]. On the
other hand, the present paper considers a sum of two (anti-)reciprocal polyno-
mials, where this sum is not reciprocal. To be more precise, let P (x), Q(x) ∈
Z[x] be (anti-)reciprocal polynomials of different orders. And we suppose fur-
ther that every zero of Q(x) is, in a sense, close to the closed unit disk. Under
a mild condition, this paper shows that for all b ∈ Z with sufficiently large
|b|, a polynomial P (x) + bQ(x) is irreducible over Q. The Mahler measure of
polynomials will play a pivotal role in the proof. As an application, we also
produce an infinite number of irreducible polynomials over Q. Moreover, the
Chebyshev transform gives us an effective bound on |b| for which P (x)+ bQ(x)
is irreducible.
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Suppose that g(x) = anx
n + · · ·+ a1x + a0 = an

∏n
i=1(x − αi) ∈ Z[x] with

an 6= 0. Then the Mahler measure of g is a positive number defined by

M(g) := |an|
n∏

i=1

max{1, |αi|}.

In particular, cyclotomic polynomials have 1 as their Mahler measures. Con-
versely, if M(g) = 1, then either g(x) or −g(x) is a product of cyclotomic
polynomials and some power of x, which is known as Kronecker’s theorem [4].
In the statement of the theorem below, we also use a modified Mahler measure

M ′(g) :=

n∏

i=1

max{1, |αi|},

that is, the leading coefficient is neglected.
The famous problem on Mahler measures, posed by Lehmer [8], is whether

or not 1 is an accumulation point of the set {M(g) : g ∈ Z[x]}. He found that
the Mahler measure of a polynomial

(1) l(x) := x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1,

is τ0 ≈ 1.17628, the unique real zero greater than 1. However, no other poly-
nomials whose Mahler measures lie in the interval (1, τ0) are known so far. In
other words, τ0 is the smallest Salem number that is ever known. See, e.g., [1].

The following result, owing to Smyth, reduces Lehmer’s problem to the
cases of reciprocal polynomials. An irreducible polynomial with a small Mahler
measure should be reciprocal as l(x) is in (1).

Proposition 1.1 ([10]). Let p(x) ∈ Z[x] be irreducible over Q with p(x) 6= x−1
and let θ0 ≈ 1.32472 be the unique real root of x3 − x − 1 = 0. If M(p) < θ0,

then p(x) is a reciprocal polynomial.

The number θ0 in the proposition turned out to be the smallest Pisot number

[9].

Let p(z) =
∑2n

i=0 aiz
i ∈ R[z] be a nonzero reciprocal polynomial of order 2n,

and suppose that the degree of p(z) is, say, n+ k. We observe that

p(z) =

2n∑

i=0

aiz
n = zn

[
an+k

(
zk +

1

zk

)
+ · · ·+ an+1

(
z +

1

z

)
+ an

]

= an+kz
n

k∏

i=1

(
z +

1

z
− αi

)
= an+kz

n−k

k∏

i=1

(z2 − αiz + 1)

for some αi ∈ C, i = 1, . . . , k. Then the Chebyshev transform T of p is defined
by

T p(x) := an+k

k∏

i=1

(x− αi).
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Note that

|p(eiθ)| = |T p(2 cos θ)|.

We let Tn and Un denote the nth Chebyshev polynomials of the first and the

second kinds respectively, which are defined by

Tn(cos θ) = cosnθ, Un(cos θ) =
sin(n+ 1)θ

sin θ
, n = 0, 1, 2, . . . .

For example, T2(x) = 2x2 − 1 and U3(x) = 8x3 − 4x. We also adopt the con-
vention U−1(x) = 0. The next propositions tell us how Chebyshev transforms
and polynomials are interrelated.

Proposition 1.2 ([5, 7]). Let v2n(z) = z2n + z2n−1 + · · · + z + 1 and let

w2n(z) = z2n + 1. Then

T v2n(x) = Un

(x
2

)
+ Un−1

(x
2

)
,

T w2n(x) = 2Tn

(x
2

)
.

Proposition 1.3 ([5, 7]). Let v2n(z) = z2n + z2n−2 + · · · + z2 + 1 and let

w2n(z) =
z2n+1+1

z+1 . Then

T v2n(x) = Un

(x
2

)
,

T w2n(x) = Un

(x
2

)
− Un−1

(x
2

)
.

2. Results and proofs

This section begins with the following variant of Rouché’s theorem, whose
proof is elementary but included for readers’ comfortable reading.

Lemma 2.1. Let f(x), g(x) ∈ C[x] and b ∈ C. Suppose that deg f = n and

deg g = m with m < n, and that g(x) = c
∏m

i=1(x−αi). Then some m (possibly
multiple) zeros β1(b), β2(b), . . . , βm(b) of f(x) + bg(x) converge to each zero

α1, α2, . . . , αm of g(x) as |b| → ∞.

Proof. Suppose that g(x) = c
∏m

i=1(x−αi) = c
∏k

j=1(x−γj)
ej has distinct zeros

γ1, γ2, . . . , γk with multiplicities e1, e2, . . . , ek respectively. For 1 ≤ j ≤ k,
let Cj be a circle centered at γj with radius εj > 0. We assume that εj is
small enough that no zeros of g(x) other than γj lie inside nor on Cj . Set
ε := min{ε1, ε2, . . . , εk}. Then all sufficiently large |b| satisfy |bg(x)| > |f(x)|
on the circle C′

j centered at γj with radius ε for all j = 1, 2, . . . , k. Rouché’s

theorem guarantees that f(x) + bg(x) has ej zeros inside C′
j as g(x) does for

every j = 1, 2, . . . , k. �

Now we consider a sum of two (anti-)reciprocal polynomials.
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Lemma 2.2. Let P (x) and Q(x) be reciprocal or anti-reciprocal polynomials

of orders p and q respectively. If both γ and γ−1 are zeros of P (x)+Q(x), then
either P (γ) = Q(γ) = 0 or γq−p = ±1.

Proof. For some positive integers p 6= q, we suppose one of the following. The
double signs below should read in the same order.

(i) xpP (x−1) = ±P (x) and xqQ(x−1) = ±Q(x).
(ii) xpP (x−1) = ±P (x) and xqQ(x−1) = ∓Q(x).

In each case, one deduces

(i) P (γ) = −Q(γ) = ∓γqQ(γ−1) = ±γqP (γ−1) = γq−pP (γ)
⇒ P (γ)(γq−p − 1) = 0,

(ii) P (γ) = −Q(γ) = ±γqQ(γ−1) = ∓γqP (γ−1) = −γq−pP (γ)
⇒ P (γ)(γq−p + 1) = 0. �

Every anti-reciprocal polynomial has 1 as its zero. Consequently, if both
P (x) and Q(x) are anti-reciprocal, then P (x) + Q(x) is divisible by x − 1,
and hence reducible. We exclude this trivial case in the next theorem. The
Euclidean algorithm enables us to easily compute gcd(P (x), Q(x)). If gcd(P (x),
Q(x)) is a nonconstant polynomial, then P (x)+Q(x) is also trivially reducible.

Theorem 2.3. For i = 1, 2, let each pair of Pi(x) and Qi(x) be coprime

polynomials with integer coefficients, and let degPi = degQi + 1 = n + 1.
Suppose, for i = 1, 2, that Pi(x) is monic, and that M ′(Qi) is less than the

smallest Pisot number θ0. Assume that p and q are distinct positive integers.

(a) Let xpP1(x
−1) = P1(x) and xqQ1(x

−1) = Q1(x). If gcd(Q1(x), x
|q−p|−

1) = 1, then P1(x) + bQ1(x) is irreducible over Q for all b ∈ Z with

sufficiently large |b|.
(b) Let xpP2(x

−1) = ±P2(x) and xqQ2(x
−1) = ∓Q2(x) with double signs

in the same order. If gcd(Q2(x), x
|q−p| + 1) = 1, then P2(x) + bQ2(x)

is irreducible over Q for all b ∈ Z with sufficiently large |b|.

In either case, any reciprocal irreducible factor of Pi(x)+bQi(x) divides x
|q−p|−

1 for (a) and x|q−p| + 1 for (b).

Proof. By Lemma 2.1, some n zeros of fi(x) := Pi(x) + bQi(x), i = 1, 2, tend
to those of Qi(x) as |b| increases. Suppose that fi(x) = gi(x)hi(x) for some
nonconstant polynomials gi(x), hi(x) ∈ Z[x]. Then they are all monic since
Pi(x) is. With no loss of generality, we may assume that gi(x) is irreducible,
and that all the zeros of gi(x) are close to some of Qi(x). Because M

′(Qi) < θ0
and gi(x) is monic, the Mahler measure of gi(x) is eventually less than θ0 as |b|
increases, and hence, gi(x) is reciprocal by Proposition 1.1. If γ is a zero of gi(x)
and thus of fi(x), then so is γ−1. Therefore, Lemma 2.2 implies g1(x)|x

|q−p|−1
and g2(x)|x

|q−p| +1. Note here that if Pi(γ) = 0, then Qi(γ) = 0, and so Pi(x)
and Qi(x) are no more coprime. Now the hypotheses gcd(Q1(x), x

|q−p|−1) = 1
and gcd(Q2(x), x

|q−p| + 1) = 1 lead us to contradictions for all b ∈ Z with
sufficiently large |b|. �
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In what follows, we deal with more concrete reciprocal polynomials via the
Chebyshev transform. Though this consideration is far from being exhaustive,
the reader may have an idea of how the Chebyshev transform works in this
theme.

Theorem 2.4. Let P (x) ∈ Z[x] be a reciprocal or anti-reciprocal monic poly-

nomial of order and degree n + 1. Let Q(x) = xn + xn−1 + · · · + xm for

0 ≤ m ≤ n but m 6= 1 if P (x) is reciprocal. If gcd(P (x), Q(x)) = 1, then

f(x) := P (x) + bQ(x) is irreducible over Q for all b ∈ Z with sufficiently large

|b|.

If P (x) is reciprocal and if m = 1, then P (x) and Q(x) are reciprocal poly-
nomials of the same order, and so f(x) is itself a reciprocal polynomial. For
the irreducibility of reciprocal polynomials, we refer to [2, 3].

Proof. Suppose that f(x) is factored as a product of two nonconstant monic
polynomials g(x) and h(x) in Z[x]. By Lemma 2.1, some n zeros of f(x) are
close to the n zeros of Q(x) for all b ∈ Z with sufficiently large |b|. Without
loss of generality, we may assume that g(x) is irreducible and that all the zeros
of g(x) are close to some zeros of Q(x). Since all the zeros of Q(x) are 0 and
roots of unity, the Mahler measure of g(x) is eventually less than the smallest
Pisot number θ0 as |b| → ∞. Accordingly, Proposition 1.1 shows that g(x) is
a reciprocal polynomial for all sufficiently large |b|. That is, every zero γ of
g(x) satisfies g(γ−1) = 0, and thus f(γ) = f(γ−1) = 0. Note that Q(x) is a
reciprocal polynomial of order n + m. If m = 1 and P (x) is anti-reciprocal,
then Lemma 2.2 proves that P (γ) = Q(γ) = 0, which contradicts the fact that
P (x) and Q(x) are relatively prime. If m = 0 or 2 and if P (x) is reciprocal
(resp. anti-reciprocal), then γ = 1 (resp. γ = −1). Note that Q(1) 6= 0 (resp.
Q(−1) 6= 0). Otherwise x − 1 (resp. x + 1) is a common factor of P (x) and
Q(x). The equation

(2) P (1) + bQ(1) = 0 (resp. P (−1) + bQ(−1) = 0)

eventually yields a contradiction as |b| increases. Now we suppose m ≥ 3.
By Lemma 2.2, γm−1 = 1 if P (x) is reciprocal, and γm−1 = −1 if P (x) is

anti-reciprocal. Note that γ cannot be ±1 by the similar reasoning involved
in (2). Therefore, γ is equal to one of γj := cos θj + i sin θj , where, if P (x)

is reciprocal, θj = 2jπ
m−1 for some j = 1, 2, . . . ,m − 2, and where, if P (x) is

anti-reciprocal, θj = jπ
m−1 for some j = 1, 2, . . . , 2m− 3. We divide the rest of

the proof into two cases.
Case 1: Let n−m = 2a for some a ∈ Z.

Since Q(x) = xm
(
xn−m + xn−m−1 + · · ·+ 1

)
, it follows from Proposition 1.2

that T Q(x) = Ua

(
x
2

)
+ Ua−1

(
x
2

)
. So one derives that, for some j,

|P (γj) | = |bQ (γj) | = |bT Q (2 cos θj) |

=
|b|| sin(a+ 1)θj + sin aθj |

| sin θj |
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=
|b||2 sin

(2a+1)θj
2 cos

θj
2 |

| sin θj |

=
|b|| sin

(
2a+1

2

)
θj |

| sin
θj
2 |

.

Note that sin
θj
2 6= 0. And if sin

(
2a+1

2

)
θj = 0, then P (γj) = Q(γj) = 0,

which implies gcd(P (x), Q(x)) 6= 1. We eventually obtain a contradiction as
|b| increases.

Case 2: Let n−m = 2a+ 1 for some a ∈ Z.
Since Q(−1) = 0, we have f(−1) 6= 0. Define a polynomial R(x) by

R(x) =
Q(x)

x+ 1
=

xm(xn−m + · · ·+ 1)

x+ 1
= xm(x2a + x2a−2 + · · ·+ x2 + 1).

By Proposition 1.3, the Chebyshev transform of R(x) is given by T R(x) =
Ua

(
x
2

)
. Hence, one finds that, for some j,

(3)

∣∣∣∣
P (γj)

γj + 1

∣∣∣∣ =
∣∣∣∣
bQ(γj)

γj + 1

∣∣∣∣ = |bR(γj)| = |bT R(2 cos θj)| = |b|

∣∣∣∣
sin(a+ 1)θj

sin θj

∣∣∣∣ .

Here, sin θj 6= 0 since γj 6= ±1, and sin(a+1)θj 6= 0 since gcd(P (x), Q(x)) = 1.
As |b| increases, the equation (3) is eventually violated. �

The next theorem does not exactly fit Theorem 2.3, but one sees that a
similar argument as before also works in this setting.

Theorem 2.5. Let P (x) ∈ Z[x] be a reciprocal or anti-reciprocal monic polyno-

mial of order p, and degP = n+1. Let Qb(x) = b(xn+1)+xn+xn−1+ · · ·+1.
If gcd(xn + 1, P (x) + xn + xn−1 + · · ·+ 1) = 1, then f(x) := P (x) +Qb(x) is

irreducible over Q for all b ∈ Z with sufficiently large |b|.

Proof. Suppose that f(x) = g(x)h(x) for some nonconstant monic polynomials
g(x) and h(x) in Z[x]. By Lemma 2.1, some n zeros of f(x) are close to the
n zeros of xn + 1 for sufficiently large |b|. Without loss of generality, we may
assume that g(x) is irreducible and that all the zeros of g(x) are close to some
zeros of xn + 1. Hence, the Mahler measure of g(x) is eventually less than θ0,
and so g(x) is a reciprocal polynomial for all sufficiently large |b|. Let γ be
a zero of g(x), and hence of f(x). One observes that p ≥ n + 1. By Lemma
2.2, γp−n = 1 if P (x) is reciprocal, and γp−n = −1 otherwise. As in the

proof of Theorem 2.4, we have γ = γj := cos θj + i sin θj. Here, θj = 2jπ
p−n

for

some j = 1, 2, . . . , p − n − 1 when P (x) is reciprocal, and θj = jπ
p−n

for some

j = 1, 2, . . . , 2(p−n)−1 when P (x) is anti-reciprocal. Note that γ = 1 cannot be
a zero for all sufficiently large |b| because f(1) = P (1)+Qb(1) = P (1)+2b+n+1.
For an odd n, in particular, γ = −1 is never a zero, either. Indeed, f(−1) = 0
implies gcd(xn + 1, P (x) + xn + xn−1 + · · ·+ 1) 6= 1.
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Case 1: Let n = 2a for some a ∈ Z. Since T Qb(x) = 2bTa

(
x
2

)
+ Ua

(
x
2

)
+

Ua−1

(
x
2

)
, one finds that

|P (γj)| = |Qb(γj)| = |T Qb(2 cos θj)|

=

∣∣∣∣2b cosaθj +
sin(a+ 1)θj + sin aθj

sin θj

∣∣∣∣

=

∣∣∣∣∣2b cosaθj +
sin

(2a+1)θj
2

sin
θj
2

∣∣∣∣∣ ≥ 2|b|| cosaθj | −

∣∣∣∣∣
sin

(2a+1)θj
2

sin
θj
2

∣∣∣∣∣ ,(4)

where sin
θj
2 never vanishes. We also claim cos aθj 6= 0. If cos aθj = 0, then

γn
j + 1 = P (γj) + γn

j + γn−1
j + · · ·+ 1 = 0 that contradicts gcd(xn + 1, P (x) +

xn + xn−1 + · · ·+1) = 1. The inequality (4) is violated for all sufficiently large
|b|.

Case 2: n = 2a+ 1 (a ∈ Z). Define a polynomial R(x) by

R(x) =
Qb(x)

x+ 1
= b

x2a+1 + 1

x+ 1
+

x2a+1 + x2a + · · ·+ 1

x+ 1

= b
x2a+1 + 1

x+ 1
+ x2a + x2a−2 + · · ·+ 1.

Applying Proposition 1.3, we have T R(x) = b
(
Ua

(
x
2

)
− Ua−1

(
x
2

))
+ Ua

(
x
2

)
.

So one deduces∣∣∣∣
P (γj)

γj + 1

∣∣∣∣ = |R(γj)| = |T R(2 cos θj)|

=

∣∣∣∣b
sin(a+ 1)θj − sin aθj

sin θj
+

sin(a+ 1)θj
sin θj

∣∣∣∣

=

∣∣∣∣∣
b cos

(2a+1)θj
2

cos
θj
2

+
sin(a+ 1)θj

sin θj

∣∣∣∣∣

≥ |b|

∣∣∣∣∣
cos

(2a+1)θj
2

cos
θj
2

∣∣∣∣∣ −
∣∣∣∣
sin(a+ 1)θj

sin θj

∣∣∣∣ .(5)

Since γj 6= ±1, we observe cos
θj
2 6= 0 and sin θj 6= 0. If cos

(2a+1)θj
2 = 0, then

the minimal polynomial for γj divides both xn+1 and P (x)+xn+xn−1+· · ·+1,
which is absurd. Now the inequality (5) eventually yields a contradiction as |b|
increases. �

3. Examples

This section applies the theorems to obtain irreducible polynomials over Q.
Let a = (a0, a1, . . . , ad) ∈ Rd+1, and let σ be one of permutations on

{0, 1, . . . d} satisfying aσ(0) ≤ aσ(1) ≤ · · · ≤ aσ(d). We define

m(a) := aσ(⌊d/2⌋) and m(a) := aσ(⌈d/2⌉).
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One observes that m(a) = m(a) if d is even. A real function H(y) :=
∑d

j=0 |y−

aj | assumes its minimum whenever y belongs to the closed interval or the

singleton [aσ(⌊d/2⌋), aσ(⌈d/2⌉)]. We set L(a) := miny∈R

∑d
j=0 |y − aj |. In the

first example demonstrating Theorem 2.3, we utilize the next proposition.

Proposition 3.1 ([6]). Let f(x) = adx
d + ad−1x

d−1 + · · · + a0 ∈ R[x] be

a reciprocal polynomial with ad > 0, and let a = (a0, a1, . . . , ad) and a′ =
(a1, a2 . . . , ad−1). If one of the following conditions holds, then all the zeros of

f lie on the unit circle:

(a) m(a) ≥ L(a),
(b) f(1) ≥ 0 and 2ad ≥ L(a′) +m(a′).

Example 1. Let P (x) = x5−3x4+2x3−3x2+x and Q(x) = 2x4+x3+x+2.
Then x6P (x−1) = P (x), x4Q(x−1) = Q(x), and gcd(P (x), Q(x)) = 1 with
gcd(Q(x), x2 − 1) = 1. Moreover, M ′(Q) = 1 by Proposition 3.1. We compute

the maximum and minimum moduli of P (θ
1/4
0 eit) and Q(θ

1/4
0 eit), respectively:

max
|z|=θ

1/4
0

|P (z)| = 12.390649 · · · , min
|z|=θ

1/4
0

|Q(z)| = 0.750626 · · · .

Hence, if |b| ≥ 17, then |bQ(z)| > |P (z)| on the circle |z| = θ
1/4
0 . Now Rouché’s

theorem guarantees that P (x)+bQ(x) and Q(x) have the same number of zeros

inside this circle. i.e., P (x) + bQ(x) has four zeros inside the circle |z| = θ
1/4
0 .

If P (x)+ bQ(x) is reducible, then it has a monic reciprocal factor g(x) dividing
x2 − 1. In other words,

P (1) + bQ(1) = −2 + 6b = 0 or P (−1) + bQ(−1) = −10 + 2b.

But these equations cannot be true for |b| ≥ 17. By additional irreducibility
checks for −16 ≤ b ≤ 16, we can state the following.

P (x)+bQ(x), b ∈ Z is irreducible over Q if and only if b 6= 0, 5.
If b = 0, then P (x) + 0Q(x) = x(x2 + 1)(x2 − 3x+ 1). And if

b = 5, then P (x) + 5Q(x) = (x + 1)(x4 + 6x3 + x2 − 4x+ 10).

The next example follows the proof of Theorem 2.4.

Example 2. Let P (x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 and
Q(x) = x9 + x8 + x7 + x6 + x5. Then one notes that x10P (x−1) = P (x) and

gcd(P (x), Q(x)) = 1. The maximum and minimum moduli of P (θ
1/9
0 eit) and

Q(θ
1/9
0 eit) are calculated as

max
|z|=θ

1/9
0

|P (z)| = 8.059197 · · · , min
|z|=θ

1/9
0

|Q(z)| = 0.165449 · · · .

Let |b| ≥ 49. Then we find that |bQ(z)| > |P (z)| on the circle |z| = θ
1/9
0 , and

thus P (x)+bQ(x) has nine zeros inside this circle. If P (x)+bQ(x) is reducible,
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then, for some j = 1, 2, 3,

|P (γj)| = |b|

∣∣∣∣∣
sin

5θj
2

sin
θj
2

∣∣∣∣∣ ,

where γj = eiθj and θj = jπ/2. But one verifies that
∣∣∣∣∣
P (γj) sin

θj
2

sin
5θj
2

∣∣∣∣∣ = 1 or 3,

which is a contradiction. More irreducibility checks for −48 ≤ b ≤ 48 enable
us to show the following.

P (x) + bQ(x), b ∈ Z is irreducible over Q if and only if b 6=
1,−3. We also have P (x)+1Q(x) = (x+1)(x9+x8−x3+1) and
P (x)−3Q(x) = (x2+1)(x8−2x7−4x6−2x5−2x3−x2+x+1).

We follow the proof of Theorem 2.5 in the last example.

Example 3. Let P (x) = x11 + 2x10 + 3x9 − x8 + x7 − 3x6 − 2x5 − x4 and
Qb(x) = b(x10 + 1) + x10 + x9 + · · ·+ 1. Then one observes that x15P (x−1) =
−P (x) and gcd(x10 + 1, P (x) + x10 + x9 + · · ·+ 1) = 1. In the similar fashion
as above, we appeal to the following computations:

max
|z|=θ

1/10
0

|P (z) + z10 + z9 + · · ·+ 1| = 14.263090 · · · ,

min
|z|=θ

1/10
0

|z10 + 1| = 0.324717 · · · .

Accordingly, for |b| ≥ 44, we deduce that P (x) + Qb(x) has ten zeros inside

the circle |z| = θ
1/10
0 . Suppose that P (x) +Qb(x) is reducible. Then, for some

j = 1, 2, . . . , 9,

|P (γj)| ≥ 2|b|| cos 5θj| −

∣∣∣∣∣
sin

11θj
2

sin
θj
2

∣∣∣∣∣ ,

where γj = eiθj and θj = jπ/5. But a computation shows that
(
|P (γj)|+

∣∣∣∣∣
sin

11θj
2

sin
θj
2

∣∣∣∣∣

)
/(2| cos 5θj|) < 6,

which contradicts |b| ≥ 44. Together with irreducibility checks for −43 ≤ b ≤
43, we conclude the following.

P (x)+Qb(x), b ∈ Z is irreducible over Q if and only if b 6= −1.
In the case of b = −1, the factorization is given by P (x) +
Q−1(x) = x(x10 + 2x9 + 4x8 + 2x6 − 2x5 − x4 + x2 + x+ 1).
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