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REMARKS ON NONTOPOLOGICAL SOLUTIONS IN
THE SELF-DUAL CHERN-SIMONS GAUGED
O(3) SIGMA MODELS

NARI CHOI AND JONGMIN HAN

ABSTRACT. In this paper, we prove the existence of nontopological so-
lutions to the self-dual equations arising from the Chern-Simons gauged
O(3) sigma models. The property of solutions depends on a parameter
T € [—1,1] appearing in the nonlinear term. The case 7 = 1 lies on the
borderline for the existence of solutions in the previous results [4, 5, 7].
We prove the existence of solutions in this case when there are only vor-
tex points. Moreover, if —1 < 7 < 1, we establish solutions which are
perturbed from the solutions of singular Liouville equations.

1. Introduction

In this paper we are interested in the following elliptic equation in R?:

d1 d2
1
(1.1) Au+ — f(u,7) = 4w g njbp, —4m g m;éy, in R?
K

j=1 j=1

where u is a real-valued function, d, stands for the Dirac measure concentrated

at p, K > 0 is a constant, n;, m; € N, and

e[l —7)— (1 +7)e"]
(1+ew)? ’

Moreover, P = {p1,p2,...,p4, + and Q = {q1,q2,...,q4, } are disjoint sets of

distinct points in R%. The point p; (¢;, respectively) is called a vortex point of
positive (negative, respectively) mass n; (m;, respectively). We set

f(uaT) =

7] < 1.

N:n1+...+ndl, M:m1+...+md2.
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The equation (1.1) comes from the self-dual Chern-Simons gauged O(3) sigma
model in R?. Classically, the O(3) sigma model describes the planar ferromag-
net and its gauged models have been widely studied in recent years. Especially,
the O(3) sigma model which is gauged by the Chern-Simons interaction is be-
lieved relevant to the planar condensed matter systems where a charge-flux
composite obeying fractional statistics plays a major role. The self-dual poten-
tial gives a system of equations which produces the minimization of the static
energy. This system can be reduced to the single elliptic equation (1.1). One
may refer to [7, 13] for the physical model and the derivation of (1.1).

Due to the physical motivation, we have the finite energy condition: f(u,7) €
L'(R?). This condition gives us three kinds of boundary conditions near oo:

nontopological BC of type I:  u(z) — —o0,
(1.2) nontopological BC of type IT: u(x) — 400,

1—
topological BC : —1
opologica u(z) — In T

for |7| <1,

as |z| — oco. The first two conditions are applied to the case |7| < 1, while
the third condition is valid only for || < 1. A solution u of (1.1) is called
a nontopological solution of type I if it satisfies the nontopological boundary
condition of type I. Nontopological solutions of type IT and topological solutions
are similarly defined. The existence of topological solutions to (1.1) was proved
in [9, 17] for arbitrary distribution of vortex points. It was also proved in [9]
that the topological solution is unique for sufficiently small £ > 0.

In this paper, we are interested in nontopological solutions. We note that
f(=u,—7) = —f(u, 7). Thus, if u is a nontopological solution of type I to
(1.1), then v = —u is a nontopological solution of type II to (1.1) with 7
replaced by —7 and the change of roles of p; and g;. In view of this symmetry
we may consider only nontopological solutions of type I to (1.1). From now
on, a nmontopological solution means a solution of (1.1) with nontopological
boundary condition of type I. Finding nontopological solutions have been one
of the main issues in the self-dual gauge field theories for the last two decades.
It is interesting to compare the equation (1.1) with the Abelian Chern-Simons-
Higgs vortex equation ([11, 12])

d
4
(1.3) Auzze“(e“—l)—i—émz%éﬁ, N=ni+ - +ng
j=1

which is regarded as the simplest one among the self-dual vortex equations
allowing nontopological boundary conditions. It is easy to check by the maxi-
mum principle that if u is a solution of (1.3), then u < 0. On the other hand,
for the equation (1.1) we do not have such pointwise condition by the presence
of vortex points of negative mass. Since the pointwise condition v < 0 is very
powerful in various types of estimates, this gives a big difference of analysis
between these two equations. Mathematically, it is a quite interesting to see
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how the results for (1.3) can be extended to (1.1) without appealing to the
pointwise condition u < 0. In the following, we briefly review the existence
results of nontopological solutions of (1.3) and their extension to (1.1), and
then give the main result of this paper.

The first approach to obtain nontopological solutions for (1.3) was finding
radial solutions for the case that p; = --- = pg = 0 ([3, 15]). In particular, it
was proved in [2] that for each S > 4N +4 there exist unique radially symmetric
nontopological solution U(x) = U(|z|) of (1.3) satisfying the flux relation

(1.4) Blu) = —

il e*(1 — e*)dz.
As a generalization, one may ask whether there exists a nontopological solution
of (1.3) satisfying the flux relation (1.4) for any given set of vortex points
{p1,...,pa} and B > 4N +4. The first result in this direction was established in
[1] where the authors obtained one parameter family of nontopological solutions
ue(x) for small € > 0 satisfying small flux condition S(u.) = 4N 4+ 4+ o(1) as
€ — 0. This is due to the nature of perturbation argument, a small perturbation
of the corresponding Liouville equation by considering the equation of scaled
solutions u.(x) = u(z/e). Another result was given in [2], where the solution
was obtained by patching radial profiles U(|z — p;|/k) near each vortex point
p; for small k > 0. In this case, solutions exist for all large flux 5 > 8V but the
vortex points cannot be arbitrarily distributed due to the interaction of each
bubble. The most general existence result is [8], where it was shown by the
Leray-Schauder degree theory that for any distribution of vortex points and for
any 3 > 4N + 4 satisfying

B¢

(1.3) allows a nontopological solution u with 8 = 8(u).

Returning to the equation (1.1), it is very interesting to study the structure
of nontopological solutions by comparing (1.1) with (1.3). The main difference
between these equations is that (1.1) allows singular sources with negative mass
which make the nonlinear term change signs. As in the case (1.3), the quantity

B(u) = 1 /]R2 flu,7)dx

2mK2

{4kN k=23, N},

is important in finding solutions. To see this, let v = u — ug, where

(1.5) anlnbc—pj ijln |z — q;|*

Then, k?Av = ff(qurv, T) € LOO(RQ)QLl(RQ). From the standard argument,
it follows that

v(z) _

|z|11>noo Injz|  27k?

/fw+mww—ﬂ)
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As a consequence, u enjoys the following behavior:

(1.6) u(z) = (2N —2M — ) Iln|z| + o(ln|z|]) as |z| — oo.

By the integrability condition f(u,7) € L*(R?), a necessary condition is
B>2N—2M+2 for —1<7<1,

(1.7) B>2N—-2M+1 for 7=1.

The exact range of 8, denoted by A, can be obtained by the Pohozaev identity
which may depends on the values of N, M, and 7. The main problem is
to construct a solution u of (1.1) for any prescribed sets P and Q and any
prescribed numbers b € A such that S(u) = b.

The first rigorous result for nontopological solutions of (1.1) comes from
[5, 7] where the authors consider the radial solutions u(x) = wu(]z|) for the case
P U Q = {0}. In this case, we have the following equation

u”(T)+lU/(T)+i2f(u(T),7') =0, 0<r<o
(1.8) r K

u(r) =2XInr +O(1) near r=0,

where ) is an integer. To explain our main results, it is worthwhile to state the
results of [5, 7] regarding to the existence of solutions as follows.

Theorem A ([5, 7]). (a) Suppose that —1 <1 < 1.
(i) If X >0, then A = (4\ +4,00). Conversely, for each > 4\ +4,
(1.8) has a unique nontopological solution U = U (r) which satisfies

(1.9) Ur) =2 = B)Inr+ Iy g + Ot as r — oo,
and
1
(1.10) 53 /}R2 fU,7)dx = 8,

where Iy g s a constant.
(i) If A = —1, then A = (0,00) such that for each 3 > 0, (1.8) has a
unique nontopological solution u(r) which satisfies (1.9)-(1.10).
(i) If A < =2, then (0,00) C A such that for each 8 > 0, (1.8) has
a unique nontopological solution u(r) which satisfies (1.9)-(1.10).
Moreover, for each 8 € (2\+2,0) there exists T = 7.(8) such that
(1.8) has at least two solutions for each T € (74, 1).

(b) Suppose that 7 =1. If A > 0, (1.8) has no nontopological solutions (of
type I). If A < —1, then A = [142X,0). For each 14+2X < 8 <0, (1.8)
has a unique nontopological solution U = U(r) which satisfies (1.10)
and

(1.11)  U@r)=2r=B)Inr 4+ I g+ Ot for 1+2X0 <8 <0,
(1.12)  U(r)=—Inr —Inlnr+O(1) for =142\

as r — Q.
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Theorem A shows that A can be different according to the values of N, M,
and 7. For results in the nonradial case, one may find solutions by extending
ideas for solving (1.3) to (1.1). The first result in this direction is [6], where the
authors established bubbling solutions for small £ when P and Q satisfies some
compatibility conditions for bubbling. Another result is [4] where the author
proved the existence of nontopological solutions of (1.1) following the method
of [8]. We state the result of [4] in the following.

Theorem B ([4]). (a) Suppose that =1 < 7 < 1 and N # M. If g >
max{0,4N — 4M + 4} and
Ak(N — M)
(1.13) se{—r—
(1.1) possesses a nontopological solution u with = B(u).
(b) Suppose that T =1 and M > N+ 1. If1+2N —2M < § < 0, then
there exists a nontopological solution u with 8 = B(u).

N> M, k:2,3,...,N7M+1},

Comparing Theorem A and Theorem B or comparing (1.3) and (1.1), we are
led to the following questions.

(1) Can we remove the condition (1.13)?

(2) Are there any nonradial nontopological solutions for the case 7 = 1
and f =14 2N — 2M as in the radial case in Theorem A? Do those
solutions satisfy the asymptotic behavior (1.12)?

(3) Are there any nontopological solutions of (1.1) which are perturbed
from the Liouville equation as in the case (1.3)7

In this paper, we provide some answers to the second and the third questions.
First, we establish nonradial nontopological solutions for the case 7 = 1 and
B8 =1+2N —2M when N = 0. Moreover, our solutions enjoy the asymptotic
behavior (1.12). So, our result gives a partial answer to the second question.
Next, for —1 <7 < 1 and M = 0, we construct solutions which are perturbed
from the singular Liouville equations. This also gives a partial answer to the
third question. We state our two main results as follows.

Theorem 1.1. Suppose that T =1. If M > 1 and N =0, then (1.1) admits a
nontopological solution (of type I) such that
(1.14) u(z) =—In|z| —Inln|z|+ O1) as |z] = .

Theorem 1.2. Suppose that M = 0 and —1 < 7 < 1. Then, there exists
go > 0 such that for all 0 < & < g, (1.1) admits a nontopological solution u.
satisfying that

(1.15) us(z) = — {2N + 4 +&%(co + 0o(1)) } In(1 + |z]) + Ine® + O(1)

as |z| — oo. Here, ¢y is a positive constant which is independent of . Fur-
thermore,

1

2mK2 Jge

(1.16) fue,7)dr = 4N + 4+ £%(co + o(1)).
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In the next section, we prove Theorems 1.1 and 1.2.

2. Proof of Theorem 1.1
Let 7 = 1 and rewrite (1.1) as

2e2
Au = — 47 m;dg.,
(2.1) K2(1 4 ev)3 Z 1%,

u — —o0 as || — .
We will use super- and sub-solution method following the argument of [10]. If
dy = 1, we are done by Theorem A(b). Suppose that dy > 2 and let M = m; +

--+mg, > 2. By induction, we may assume that there exists a nontopological

solution u; of
do—1

262u1
A’U,l = K2(1 _j’_e’LL1 87T Z m] q;j»

which satisfies (1.14). We also define ug to be a solutlon of

2e2u2

Aug = ———
12 K2(1 + ev2)3

— 8mmyg, 5qd2 ,

which satisfies (1.14).
For a solution u of (2.1) and a number ¢ € (0,1), let v.(x) = u(z/e). Then,
(2.1) becomes

2e2v= &2
Ave = k2e2(1 4 eve)3 4ﬁij5q

where ¢ = eq;. Let

ds ds
ng(x):ijln(1+|x—q§|_2) and ¢1(z Z—
j=1 j=1 1+|x—q]|)
If we set V. = v, — 7., then
262775“1’2‘/5
A‘/E - 5262(1 + 6V5+775)3 - 9178.
Let 1, be a smooth function on R? with Vy(2) = —In|z| — Inln |2 for |z| > 2

and Vo = 0 for |z| < 1. If we put Vo = Vo +w, K =" and g. = g1 + AV,
we obtain

2K2€2775 +2w

2.2 Aw = o
(22) v k2e2(1 + Kewtne)3 Je

For small ¢, we may assume that sup |g5|> < 1/36. Let
da
Qmj
be=2 Ty |z — g5

Jj=1
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We claim that ¢, is a bounded supersolution of (2.2) for all small . We note
that
da

m, (3l — 4P -
A — J J

®e + ge ; 1+ |z — ¢;°?)?

First, suppose that |z|> < 1/12. Since 3|z — qj5|2 < 3(2)z)” + 2|qj€|2) <2/3
and Vo = 0. Then,

1
NS

2K 2211264
5252(1 + K6n5+¢5>3 :

Ap. +9. <0<

Next, suppose that |z|? > 1/12. Since |z — qj‘3|2 > %|x|27|qj‘g|2 >1/72, 1. and
¢. are uniformly bounded with respect to e. We note that K = (|z|In |z|)~!
and AVy = (|z|In|z|) =2 for |z| > 2. Hence, for all sufficiently small

QK 2e2n-+2¢e
k2e2(1 + Kenetoe)3’

Age +ge < Y |z]? > 1/12.

and the claim follows.

Now, let us fix ¢ € (0,1) such that (2.2) allows a bounded supersolution
wT. For an appropriate subsolution of (2.2), we use u; and us. We change the
equations of u; and wuy into the regularized forms by letting

Wi(z) = ui(z/e) = me(z) — Vo(z) and Wa(z) = uz(z/e) —n2e(x) — Vo(x),
where
dy—1
e1—2
me(@) =Y 2min(1 + |z — ¢;°| %) and na.c () = 2mg, (1 + [ — a,| ).
j=1
Then, we have
AW, = C(w,nlﬁ(x) + Wl(:zz)) — h1,. and AW, = C($,77275(.T) + WQ(:I:)) — ho,
where ((z,t) = [2K?(x)e?]/[k%€*(1 + K (x)e")?] for (z,t) € R? x R and

da—1

=AVp+ ———2 —— and ho.=AVp+ —TF——.
Z 1+|x—q8|> : (1+ | — ¢;*)?

8md2

We observe that 7. = (m1,c + 12,¢)/2 and ge = (h1,e + h2e)/2. Since K is
bounded, there exists a € R such that for all t < «

¢  2K?%e*(2— Ke' 9’C  2K?e*'(K?e* —TKe' +4

—Cz e €)>0 and —C: (K7 e+)>0-

ot k2e2(1 + Ket)* ot? k2e?(1 + Ket)®
Thus, for each x € R?, {(z,-) is increasing and convex with respect to t for
t < a. On the other hand, since uy satisfies (1.14) by induction assumption,
there exists ¢, < 0 such that wy = Wi + ¢ < « for k = 1,2, which implies
that

Awy > (2,16 (x) + wi(z)) — hie and Aws > ((z,m2.0(z) + w2 (2)) — hope.
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Let wo = (’LU1 + ’LUQ)/2 Then,

1
Awy > 5{@(%771,5 +w1) + C(zﬂh,s +w2)} —ge > ¢(x,m: + wo) — ge-

Since wq is bounded above, we can choose a constant ¢y < 0 such that w™ =
wo + co < wt on R2. Then w™ satisfies

Aw™ > (2, ne(z) + w™ () — ge,

which implies that w™ is a subsolution of (2.2) with w™ < w™. Now applying
the method of super and subsolutions (e.g., see Theorem 2.10 of [14]), we get
a bounded solution w of (2.2). Obviously, u(z) = w(ezx) + n.(ex) + Vo(ex)
becomes a solution of (2.1) and the proof is complete.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We will construct solutions by reduc-
ing (1.1) as a perturbation of singular Liouville equations. This method was
initiated from [1].

Let M =0, —1 <7 < 1 and rewrite (1.1) as

e“[1—7)— (1+7)e"
(3.1) Au + (T o) —477an ;-

Set us(2) = u(z/e) — Ine?. Then, we have

el [(1 —7)—2(1+7)ev
2 Au, I _y § j g
(3 ) Ue + H2(1 + 52(3“5) 4 nJ pj-

If £ is small enough, (3.2) can be regarded as a perturbation of the following
Liouville problem:

dy
Aue + Ne¥s =4n Z Nj0ep;
(3.3) j=1

/ e'sdr < oo,
RZ
where A = (1 — 1) /K2

Hereafter, we identify R? and C by the relation x = (z1,22) <> z = x1 +iz2.

Let
dy

9:(z2) = (N +1) H(z —ep;)™ and Ge(z) = / g=(8)ds.
j=1 0
Then, it is well known that In p. 4 is a solution of (3.3), where a € C and

_ Se)P
Pl = AT 1G-) T aPy
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We set
(3.4) ue(2) = Inpe o(2) + 2w (2).

Then w satisfies

B (1=7)pea |
(3:9) Awe = K21+ e2pe get e )3 ( g2 ) + Hea(we),

where
(L+7)p2 e B(1—7)p2 e e
K2(1 + e2pe ge=we)3 | R2(1 + e2pg ge= = )3
(1—7) (3202 €2 e +e"pl e* )
k2(1 + e2p, qe57we)3
Since the right hand side of (3.5) is regular at (¢,a) = (0,0), for sufficiently
small €, a we may regard (3.5) as perturbation of the case (¢,a) = (0,0):
4}{2—/\227/)2,

He,a(we) =

(3.6) Lwg := Awg + pwy =

where for r = |z,
8(N + 1)22N
p(r) = Apo,o(r) = (TENCIEEIe
It is known that (3.6) has a unique radial solution wg(r). Moreover, as r =
|z| = oo, we have
wolr) = —coln(1 +7) +O(1),
1
wlo(r) = _070 +0(_)a

r

(3.7)

for some positive ¢g. See [1] or Corollary 3.4.21 of [16] . Finally, we set
(3.8) we = wo + .
Then, w, is a solution of (3.5) if and only if P(e,a,v) = 0 where

M e wote) _
P(e,a,v) = Av+ (1+ €2pgya€€2(w°+v))3 ( £2 ) + He o (wo +v)
4—-21 ,
— pwo + e P

We observe that P(0,0,0) = 0. We will apply the standard Implicit Function
Theorem to the operator P to find solutions of P(g,a,v) = 0.
First, let us introduce two Hilbert spaces:

X = {u €L} (R?): / (1+ [22t5)|uf? dz < oo} ,
R2

2
Y = {u e W2AR?) : Au e X and / ful

dz < ooy .
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The inner products are defined by

(u,v)x = / (1+ |2)*F ) dz,
R2

uv
(u,v)y = (Au, Av)x + /R2 W
It is known from [1] that there exists a constant C' > 0 such that
(3.9) lv(z)| < Cllvlly n(2+ |2]), VeY.
Given § > 0, we define
Qs ={(e,a,v) ERxC XY : |e|+]|a| +]|v|y <3}

Lemma 3.1. If § > 0 is small enough, then P maps Qs into X. Moreover, P
is continuously differentiable on €.

Proof. Let (g,a,v) € Q5. We deduce from (3.7) and (3.9) that
(3.10) peal2)e” (0O < O(2 4 |5]) AN 0100,

Hence, if § > 0 is sufficiently small, then H, ,(wo + v) € X. Similarly, other
terms of P(e,a,v) belong to X. Moreover, since P(g,a,v) is regular with
respect to ¢, one can easily check that P is C! in 5. We omit the details. [

Now, let
I'= P(’ayv)(0,0,0) :CxY — X.

By direct calculation we obtain
L(b, ) = Lo — 41 bin — 49 _ban,
where

2(4—27) N
M=pwo— "33 P> o(r) = 1+ r2N+2’

¢4 () = Yo (r) cos ((N +1)6), ¢—(r) = vo(r)sin (N + 1)0).
Lemma 3.2. We have
(3.11) /R neidr < 0.

Proof. Let 0 = (14 r?N+2)=2. By direct computation, we obtain

16(N + 1)2r4N+2 )
(3.12) Lo = (15 22y = 2pv;.

Then,
o 2(4— 21
/}R2 nqbidac = 7T/O (pwo — (,.;2/\2 )pQ)wgrdr

< 1 2(4 — 27)
= 7r/0 (i(ﬁa)wo - Wp%/)g)rdr
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>/l 24-27) 5 o
:7‘(‘/0 (505100—7’{2)\2 pwo)rdr

m(4 —27) /°° 51 9
= ———" p (—O’ — 24 )TdT.
K2A2 2 0
Letting t = 2, we see that
e 1
/ P> (—O’ — 21/)8)7’(17’
0 2
o t2N o 5t(3N+1)
= 16w (N 14{/ 7dt—/ ——dt
m(N+1) s (Lt NT1)s y (Lt N+1)6

2N +1 &0 12N
_ 4

By a similar argument, we can prove the result for ¢_. O

Lemma 3.3. T is surjective and Kerl' = {0} X span{¢g, ¢, 0_}+ C C x Y,
where N
1— 2N+
¢O(T) = 1 +T2N+2'

Proof. First, we recall from that [1] that

(3.13) ImL={heX : /}R2 hoL =0}, KerL = span{¢o, ¢4, 0_}.

Given f € X, we define

Jies o, [fe
4 [ned’ 4 [ o2
By Lemma 3.2, b; and b, are well defined. Then,

/ (f +40101m + 4p_ban)p+dx = 0.
RQ

Hence, by (3.13) there exists w € Y such that Lw = f + 4¢b1n + 4¢_ban. In
other words, I'(by + ib2,w) = f. Thus, I is surjective.
Next, suppose that T'(b; 4 iba, w) = 0. Then, by (3.13),

by =

0= (Lw,¢y)r2 = (4 b1n +4¢_ban, ¢y )12 = *4171/ nex,
RQ

which implies by Lemma 3.2 that b; = 0. Similarly, b = 0. Moreover, w €
KerL. O

Proof of Theorem 1.2. By Lemma 3.1, P is a C! map on Q5. Moreover, I' =
P(’(w)(O, 0,0) is surjective. Since I is not injective, we decompose Y = KerL$H Z
with Z = (Ker£)* and denote by Q the restriction of P on R x C x Z. Then,
by Lemma 3.3, Q’(aﬁv)(0,0,0) :RxCx Z — X is a bijective. Applying the
standard Implicit Function Theorem to the equation Q(e, a,v) = 0, we conclude
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that there exist g > 0 and a C'-map € — (a.,v.) € C x Y for |¢|] < g9 such
that Q(e, ac,v:) = 0. Then, by (3.4) and (3.8)

(3.14) ue(2) :=Ine? +In p. 4(e2) + %wo(e2) + v (e2).

is a solution of (3.2) for 0 < € < &.
It remains to show the estimates (1.15)—(1.16). Since ¢ — (ae,ve) is CF,
[lvelly — 0 as e — 0. Thus, it follows from (3.9) that

(3.15) [ve(2)] <o(1)In(2+ |z]) as |z| = oo,
which yields the estimate (1.15) by (3.7).

Next, we prove (1.16). For small § > 0, Us := R?\ U‘j;l Bs(p;). Then,
S
K2 Jge
It follows from (3.14) that for z € Us,

Aue = A{=2In (1 + |Ge(ez) + ac|?) + wo(ez) + %ve(e2) } -

We note that

/]R Afve(ez))d

(3.16) fue,7)de = — ;im Audx.

—0 US

<@+ 12DTF s - 1A lx < Cllvelly = o(1).

I1

We also deduce from (3.7) that
0
A dz = i — dS = —2mcy.
/]R2 (wo(ez))dz dim n 5rw0(r> mCo
Moreover,
/ Aln (14 |Ge(e2) + ac|?)dz
R2
2
= lim Or|Ge(ez) + ac| 5dS
R—o0 |z|=R 1+ |G5(€Z) + a5|
27 IN+2 p2N+1
2N + 2 R 1
= lim {( 2)e +0(75) } Ray
R0 Jg 1 + e2N+2R2N+2 R2
=4n(N +1).
Inserting these estimates into (3.16), we obtain (1.16). This completes the
proof of Theorem 1.2. (I
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