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REMARKS ON NONTOPOLOGICAL SOLUTIONS IN

THE SELF-DUAL CHERN-SIMONS GAUGED

O(3) SIGMA MODELS

Nari Choi and Jongmin Han

Abstract. In this paper, we prove the existence of nontopological so-
lutions to the self-dual equations arising from the Chern-Simons gauged
O(3) sigma models. The property of solutions depends on a parameter
τ ∈ [−1, 1] appearing in the nonlinear term. The case τ = 1 lies on the
borderline for the existence of solutions in the previous results [4, 5, 7].
We prove the existence of solutions in this case when there are only vor-
tex points. Moreover, if −1 ≤ τ < 1, we establish solutions which are
perturbed from the solutions of singular Liouville equations.

1. Introduction

In this paper we are interested in the following elliptic equation in R2:

(1.1) ∆u +
1

κ2
f(u, τ) = 4π

d1∑

j=1

njδpj
− 4π

d2∑

j=1

mjδqj in R
2,

where u is a real-valued function, δp stands for the Dirac measure concentrated
at p, κ > 0 is a constant, nj ,mj ∈ N, and

f(u, τ) =
eu
[
(1 − τ)− (1 + τ)eu

]

(1 + eu)3
, |τ | ≤ 1.

Moreover, P = {p1, p2, . . . , pd1
} and Q = {q1, q2, . . . , qd2

} are disjoint sets of
distinct points in R2. The point pj (qj , respectively) is called a vortex point of
positive (negative, respectively) mass nj (mj , respectively). We set

N = n1 + · · ·+ nd1
, M = m1 + · · ·+md2

.
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The equation (1.1) comes from the self-dual Chern-Simons gauged O(3) sigma
model in R2. Classically, the O(3) sigma model describes the planar ferromag-
net and its gauged models have been widely studied in recent years. Especially,
the O(3) sigma model which is gauged by the Chern-Simons interaction is be-
lieved relevant to the planar condensed matter systems where a charge-flux
composite obeying fractional statistics plays a major role. The self-dual poten-
tial gives a system of equations which produces the minimization of the static
energy. This system can be reduced to the single elliptic equation (1.1). One
may refer to [7, 13] for the physical model and the derivation of (1.1).

Due to the physical motivation, we have the finite energy condition: f(u, τ) ∈
L1(R2). This condition gives us three kinds of boundary conditions near ∞:

(1.2)

nontopological BC of type I : u(x) → −∞,

nontopological BC of type II : u(x) → +∞,

topological BC : u(x) → ln
1− τ

1 + τ
for |τ | < 1,

as |x| → ∞. The first two conditions are applied to the case |τ | ≤ 1, while
the third condition is valid only for |τ | < 1. A solution u of (1.1) is called
a nontopological solution of type I if it satisfies the nontopological boundary
condition of type I. Nontopological solutions of type II and topological solutions
are similarly defined. The existence of topological solutions to (1.1) was proved
in [9, 17] for arbitrary distribution of vortex points. It was also proved in [9]
that the topological solution is unique for sufficiently small κ > 0.

In this paper, we are interested in nontopological solutions. We note that
f(−u,−τ) = −f(u, τ). Thus, if u is a nontopological solution of type I to
(1.1), then v = −u is a nontopological solution of type II to (1.1) with τ

replaced by −τ and the change of roles of pj and qk. In view of this symmetry
we may consider only nontopological solutions of type I to (1.1). From now

on, a nontopological solution means a solution of (1.1) with nontopological

boundary condition of type I. Finding nontopological solutions have been one
of the main issues in the self-dual gauge field theories for the last two decades.
It is interesting to compare the equation (1.1) with the Abelian Chern-Simons-
Higgs vortex equation ([11, 12])

(1.3) ∆u =
4

κ2
eu(eu − 1) + 4π

d∑

j=1

njδpj
, N = n1 + · · ·+ nd

which is regarded as the simplest one among the self-dual vortex equations
allowing nontopological boundary conditions. It is easy to check by the maxi-
mum principle that if u is a solution of (1.3), then u < 0. On the other hand,
for the equation (1.1) we do not have such pointwise condition by the presence
of vortex points of negative mass. Since the pointwise condition u < 0 is very
powerful in various types of estimates, this gives a big difference of analysis
between these two equations. Mathematically, it is a quite interesting to see
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how the results for (1.3) can be extended to (1.1) without appealing to the
pointwise condition u < 0. In the following, we briefly review the existence
results of nontopological solutions of (1.3) and their extension to (1.1), and
then give the main result of this paper.

The first approach to obtain nontopological solutions for (1.3) was finding
radial solutions for the case that p1 = · · · = pd = 0 ([3, 15]). In particular, it
was proved in [2] that for each β > 4N+4 there exist unique radially symmetric
nontopological solution U(x) = U(|x|) of (1.3) satisfying the flux relation

(1.4) β(u) =
2

πκ2

∫

R2

eu(1 − eu)dx.

As a generalization, one may ask whether there exists a nontopological solution
of (1.3) satisfying the flux relation (1.4) for any given set of vortex points
{p1, . . . , pd} and β > 4N+4. The first result in this direction was established in
[1] where the authors obtained one parameter family of nontopological solutions
uε(x) for small ε > 0 satisfying small flux condition β(uε) = 4N + 4 + o(1) as
ε→ 0. This is due to the nature of perturbation argument, a small perturbation
of the corresponding Liouville equation by considering the equation of scaled
solutions uε(x) = u(x/ε). Another result was given in [2], where the solution
was obtained by patching radial profiles U(|x − pj |/κ) near each vortex point
pj for small κ > 0. In this case, solutions exist for all large flux β > 8N but the
vortex points cannot be arbitrarily distributed due to the interaction of each
bubble. The most general existence result is [8], where it was shown by the
Leray-Schauder degree theory that for any distribution of vortex points and for
any β > 4N + 4 satisfying

β 6∈
{ 4kN

k − 1
: k = 2, 3, . . . , N

}
,

(1.3) allows a nontopological solution u with β = β(u).
Returning to the equation (1.1), it is very interesting to study the structure

of nontopological solutions by comparing (1.1) with (1.3). The main difference
between these equations is that (1.1) allows singular sources with negative mass
which make the nonlinear term change signs. As in the case (1.3), the quantity

β(u) =
1

2πκ2

∫

R2

f(u, τ)dx

is important in finding solutions. To see this, let v = u− u0, where

(1.5) u0(x) =

d1∑

j=1

nj ln |x− pj |
2 −

d2∑

j=1

mj ln |x− qj |
2.

Then, κ2∆v = −f(u0+v, τ) ∈ L∞(R2)∩L1(R2). From the standard argument,
it follows that

lim
|x|→∞

v(x)

ln |x|
= −

1

2πκ2

∫

R2

f(u0 + v, τ)dx = −β(u).
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As a consequence, u enjoys the following behavior:

(1.6) u(x) = (2N − 2M − β) ln |x|+ o(ln |x|) as |x| → ∞.

By the integrability condition f(u, τ) ∈ L1(R2), a necessary condition is

(1.7)
β ≥ 2N − 2M + 2 for − 1 ≤ τ < 1,

β ≥ 2N − 2M + 1 for τ = 1.

The exact range of β, denoted by Λ, can be obtained by the Pohozaev identity
which may depends on the values of N , M , and τ . The main problem is
to construct a solution u of (1.1) for any prescribed sets P and Q and any
prescribed numbers b ∈ Λ such that β(u) = b.

The first rigorous result for nontopological solutions of (1.1) comes from
[5, 7] where the authors consider the radial solutions u(x) = u(|x|) for the case
P ∪ Q = {0}. In this case, we have the following equation

(1.8)






u′′(r) +
1

r
u′(r) +

1

κ2
f(u(r), τ) = 0, 0 < r <∞

u(r) = 2λ ln r +O(1) near r = 0,

where λ is an integer. To explain our main results, it is worthwhile to state the
results of [5, 7] regarding to the existence of solutions as follows.

Theorem A ([5, 7]). (a) Suppose that −1 ≤ τ < 1.
(i) If λ ≥ 0, then Λ = (4λ+ 4,∞). Conversely, for each β > 4λ+ 4,

(1.8) has a unique nontopological solution U = U(r) which satisfies

(1.9) U(r) = (2λ− β) ln r + Iλ,β +O(r2+2λ−β) as r → ∞,

and

(1.10)
1

2πκ2

∫

R2

f(U, τ)dx = β,

where Iλ,β is a constant.

(ii) If λ = −1, then Λ = (0,∞) such that for each β > 0, (1.8) has a

unique nontopological solution u(r) which satisfies (1.9)-(1.10).
(iii) If λ ≤ −2, then (0,∞) ⊂ Λ such that for each β > 0, (1.8) has

a unique nontopological solution u(r) which satisfies (1.9)-(1.10).
Moreover, for each β ∈ (2λ+2, 0) there exists τ = τ∗(β) such that

(1.8) has at least two solutions for each τ ∈ (τ∗, 1).
(b) Suppose that τ = 1. If λ ≥ 0, (1.8) has no nontopological solutions (of

type I). If λ ≤ −1, then Λ = [1+2λ, 0). For each 1+2λ ≤ β < 0, (1.8)
has a unique nontopological solution U = U(r) which satisfies (1.10)
and

U(r) = (2λ− β) ln r + Iλ,β + O(r2+4λ−2β) for 1 + 2λ < β < 0,(1.11)

U(r) = − ln r − ln ln r +O(1) for β = 1 + 2λ(1.12)

as r → ∞.
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Theorem A shows that Λ can be different according to the values of N , M ,
and τ . For results in the nonradial case, one may find solutions by extending
ideas for solving (1.3) to (1.1). The first result in this direction is [6], where the
authors established bubbling solutions for small κ when P and Q satisfies some
compatibility conditions for bubbling. Another result is [4] where the author
proved the existence of nontopological solutions of (1.1) following the method
of [8]. We state the result of [4] in the following.

Theorem B ([4]). (a) Suppose that −1 ≤ τ < 1 and N 6= M . If β >

max{0, 4N − 4M + 4} and

(1.13) β 6∈
{4k(N −M)

k − 1
: N > M, k = 2, 3, . . . , N −M + 1

}
,

(1.1) possesses a nontopological solution u with β = β(u).
(b) Suppose that τ = 1 and M ≥ N + 1. If 1 + 2N − 2M < β < 0, then

there exists a nontopological solution u with β = β(u).

Comparing Theorem A and Theorem B or comparing (1.3) and (1.1), we are
led to the following questions.

(1) Can we remove the condition (1.13)?
(2) Are there any nonradial nontopological solutions for the case τ = 1

and β = 1 + 2N − 2M as in the radial case in Theorem A? Do those
solutions satisfy the asymptotic behavior (1.12)?

(3) Are there any nontopological solutions of (1.1) which are perturbed
from the Liouville equation as in the case (1.3)?

In this paper, we provide some answers to the second and the third questions.
First, we establish nonradial nontopological solutions for the case τ = 1 and
β = 1 + 2N − 2M when N = 0. Moreover, our solutions enjoy the asymptotic
behavior (1.12). So, our result gives a partial answer to the second question.
Next, for −1 ≤ τ < 1 and M = 0, we construct solutions which are perturbed
from the singular Liouville equations. This also gives a partial answer to the
third question. We state our two main results as follows.

Theorem 1.1. Suppose that τ = 1. If M ≥ 1 and N = 0, then (1.1) admits a

nontopological solution (of type I) such that

(1.14) u(x) = − ln |x| − ln ln |x|+O(1) as |x| → ∞.

Theorem 1.2. Suppose that M = 0 and −1 ≤ τ < 1. Then, there exists

ε0 > 0 such that for all 0 < ε < ε0, (1.1) admits a nontopological solution uε
satisfying that

uε(x) = −
{
2N + 4 + ε2(c0 + o(1))

}
ln(1 + |x|) + ln ε2 +O(1)(1.15)

as |x| → ∞. Here, c0 is a positive constant which is independent of ε. Fur-

thermore,

1

2πκ2

∫

R2

f(uε, τ)dx = 4N + 4 + ε2(c0 + o(1)).(1.16)
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In the next section, we prove Theorems 1.1 and 1.2.

2. Proof of Theorem 1.1

Let τ = 1 and rewrite (1.1) as

(2.1)
∆u =

2e2u

κ2(1 + eu)3
− 4π

d2∑

j=1

mjδqj ,

u→ −∞ as |x| → ∞.

We will use super- and sub-solution method following the argument of [10]. If
d2 = 1, we are done by Theorem A(b). Suppose that d2 ≥ 2 and letM = m1+
· · ·+md2

≥ 2. By induction, we may assume that there exists a nontopological
solution u1 of

∆u1 =
2e2u1

κ2(1 + eu1)3
− 8π

d2−1∑

j=1

mjδqj ,

which satisfies (1.14). We also define u2 to be a solution of

∆u2 =
2e2u2

κ2(1 + eu2)3
− 8πmd2

δqd2 ,

which satisfies (1.14).
For a solution u of (2.1) and a number ε ∈ (0, 1), let vε(x) = u(x/ε). Then,

(2.1) becomes

∆vε =
2e2vε

κ2ε2(1 + evε)3
− 4π

d2∑

j=1

mjδqε
j
,

where qεj = εqj . Let

ηε(x) =

d2∑

j=1

mj ln
(
1 + |x− qεj |

−2)
and g1,ε(x) =

d2∑

j=1

4mj(
1 + |x− qεj |

2)2 .

If we set Vε = vε − ηε, then

∆Vε =
2e2ηε+2Vε

κ2ε2(1 + eVε+ηε)3
− g1,ε.

Let V0 be a smooth function on R
2 with V0(x) = − ln |x| − ln ln |x| for |x| ≥ 2

and V0 = 0 for |x| ≤ 1. If we put Vε = V0 + w, K = eV0 and gε = g1,ε +∆V0,
we obtain

(2.2) ∆w =
2K2e2ηε+2w

κ2ε2(1 +Kew+ηε)3
− gε.

For small ε, we may assume that sup |qεj |
2 < 1/36. Let

φε =

d2∑

j=1

2mj

1 + |x− qεj |
2
.
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We claim that φε is a bounded supersolution of (2.2) for all small ε. We note
that

∆φε + gε =

d2∑

j=1

4mj(3|x− qj
ε|2 − 1)

(1 + |x− qjε|2)3
+∆V0.

First, suppose that |x|2 ≤ 1/12. Since 3|x− qj
ε|

2
≤ 3(2|x|

2
+ 2|qj

ε|
2
) ≤ 2/3

and V0 = 0. Then,

∆φε + gε < 0 ≤
2K2e2ηε+2φε

κ2ε2(1 +Keηε+φε)3
.

Next, suppose that |x|2 ≥ 1/12. Since |x− qj
ε|
2
≥ 1

2 |x|
2
−|qj

ε|
2
≥ 1/72, ηε and

φε are uniformly bounded with respect to ε. We note that K = (|x| ln |x|)−1

and ∆V0 = (|x| ln |x|)−2 for |x| ≥ 2. Hence, for all sufficiently small ε

∆φε + gε <
2K2e2ηε+2φε

κ2ε2(1 +Keηε+φε)3
, ∀ |x|2 ≥ 1/12.

and the claim follows.
Now, let us fix ε ∈ (0, 1) such that (2.2) allows a bounded supersolution

w+. For an appropriate subsolution of (2.2), we use u1 and u2. We change the
equations of u1 and u2 into the regularized forms by letting

W1(x) = u1(x/ε)− η1,ε(x)− V0(x) and W2(x) = u2(x/ε)− η2,ε(x)− V0(x),

where

η1,ε(x) =

d2−1∑

j=1

2mj ln(1 + |x− qj
ε|
−2

) and η2,ε(x) = 2md2
ln(1 + |x− qd2

ε|
−2

).

Then, we have

∆W1 = ζ
(
x, η1,ε(x) +W1(x)

)
− h1,ε and ∆W2 = ζ

(
x, η2,ε(x) +W2(x)

)
− h2,ε,

where ζ(x, t) = [2K2(x)e2t]/[κ2ε2(1 +K(x)et)3] for (x, t) ∈ R
2 × R and

h1,ε = ∆V0 +

d2−1∑

j=1

8mj

(1 + |x− qjε|
2
)2

and h2,ε = ∆V0 +
8md2

(1 + |x− qjε|
2
)2
.

We observe that ηε = (η1,ε + η2,ε)/2 and gε = (h1,ε + h2,ε)/2. Since K is
bounded, there exists α ∈ R such that for all t < α

∂ζ

∂t
=

2K2e2t(2 −Ket)

κ2ε2(1 +Ket)4
> 0 and

∂2ζ

∂t2
=

2K2e2t(K2e2t − 7Ket + 4)

κ2ε2(1 +Ket)5
> 0.

Thus, for each x ∈ R2, ζ(x, ·) is increasing and convex with respect to t for
t < α. On the other hand, since uk satisfies (1.14) by induction assumption,
there exists ck < 0 such that wk = Wk + ck < α for k = 1, 2, which implies
that

∆w1 > ζ
(
x, η1,ε(x) + w1(x)

)
− h1,ε and ∆w2 > ζ

(
x, η2,ε(x) + w2(x)

)
− h2,ε.
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Let w0 = (w1 + w2)/2. Then,

∆w0 >
1

2

{
ζ
(
x, η1,ε + w1

)
+ ζ

(
x, η2,ε + w2

)}
− gε ≥ ζ(x, ηε + w0)− gε.

Since w0 is bounded above, we can choose a constant c0 < 0 such that w− =
w0 + c0 < w+ on R2. Then w− satisfies

∆w− > ζ
(
x, ηε(x) + w−(x)

)
− gε,

which implies that w− is a subsolution of (2.2) with w− < w+. Now applying
the method of super and subsolutions (e.g., see Theorem 2.10 of [14]), we get
a bounded solution w of (2.2). Obviously, u(x) = w(εx) + ηε(εx) + V0(εx)
becomes a solution of (2.1) and the proof is complete.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We will construct solutions by reduc-
ing (1.1) as a perturbation of singular Liouville equations. This method was
initiated from [1].

Let M = 0, −1 ≤ τ < 1 and rewrite (1.1) as

(3.1) ∆u +
eu
[
(1− τ) − (1 + τ)eu

]

κ2(1 + eu)3
= 4π

d1∑

j=1

njδpj
.

Set uε(z) = u(z/ε)− ln ε2. Then, we have

(3.2) ∆uε +
euε

[
(1 − τ)− ε2(1 + τ)euε

]

κ2(1 + ε2euε)3
= 4π

d1∑

j=1

njδεpj
.

If ε is small enough, (3.2) can be regarded as a perturbation of the following
Liouville problem:

(3.3)

∆uε + λeuε = 4π

d1∑

j=1

njδεpj
,

∫

R2

euεdx <∞,

where λ = (1− τ)/κ2.
Hereafter, we identify R2 and C by the relation x = (x1, x2) ↔ z = x1+ ix2.

Let

gε(z) = (N + 1)

d1∏

j=1

(z − εpj)
nj and Gε(z) =

∫ z

0

gε(s)ds.

Then, it is well known that ln ρε,a is a solution of (3.3), where a ∈ C and

ρε,a(z) =
8|gε(z)|

2

λ(1 + |Gε(z) + a|2)2
.
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We set

(3.4) uε(z) = ln ρε,a(z) + ε2wε(z).

Then w satisfies

(3.5) ∆wε = −
(1− τ)ρε,a

κ2(1 + ε2ρε,aeε
2wε)3

(eε2wε − 1

ε2

)
+Hε,a(wε),

where

Hε,a(wε) =
(1 + τ)ρ2ε,ae

2ε2wε

κ2(1 + ε2ρε,aeε
2wε)3

+
3(1− τ)ρ2ε,ae

ε2wε

κ2(1 + ε2ρε,aeε
2wε)3

+
(1− τ)

(
3ε2ρ3ε,ae

2ε2wε + ε4ρ4ε,ae
3ε2wε

)

κ2(1 + ε2ρε,aeε
2wε)3

.

Since the right hand side of (3.5) is regular at (ε, a) = (0, 0), for sufficiently
small ε, a we may regard (3.5) as perturbation of the case (ε, a) = (0, 0):

(3.6) Lw0 := ∆w0 + ρw0 =
4− 2τ

κ2λ2
ρ2,

where for r = |z|,

ρ(r) = λρ0,0(r) =
8(N + 1)2r2N

(1 + r2N+2)2
.

It is known that (3.6) has a unique radial solution w0(r). Moreover, as r =
|z| → ∞, we have

(3.7)






w0(r) = −c0 ln(1 + r) +O(1),

w′
0(r) = −

c0

r
+ o

(1
r

)
,

for some positive c0. See [1] or Corollary 3.4.21 of [16] . Finally, we set

(3.8) wε = w0 + v.

Then, wε is a solution of (3.5) if and only if P (ε, a, v) = 0 where

P (ε, a, v) = ∆v +
λρε,a

(1 + ε2ρε,aeε
2(w0+v))3

(eε2(w0+v) − 1

ε2

)
+Hε,a(w0 + v)

− ρw0 +
4− 2τ

κ2λ2
ρ2.

We observe that P (0, 0, 0) = 0. We will apply the standard Implicit Function
Theorem to the operator P to find solutions of P (ε, a, v) = 0.

First, let us introduce two Hilbert spaces:

X =

{
u ∈ L2

loc(R
2) :

∫

R2

(1 + |z|2+
1

4 )|u|2 dz <∞

}
,

Y =

{
u ∈W

2,2
loc (R

2) : ∆u ∈ X and

∫

R2

|u|2

1 + |z|2+
1

4

dz <∞

}
.
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The inner products are defined by

(u, v)X =

∫

R2

(1 + |z|2+
1

4 )uv dz,

(u, v)Y = (∆u,∆v)X +

∫

R2

uv

1 + |z|2+
1

4

dz.

It is known from [1] that there exists a constant C > 0 such that

|v(z)| ≤ C‖v‖Y ln(2 + |z|), ∀ ∈ Y.(3.9)

Given δ > 0, we define

Ωδ = {(ε, a, v) ∈ R× C× Y : |ε|+ |a|+ ‖v‖Y < δ} .

Lemma 3.1. If δ > 0 is small enough, then P maps Ωδ into X. Moreover, P

is continuously differentiable on Ωδ.

Proof. Let (ε, a, v) ∈ Ωδ. We deduce from (3.7) and (3.9) that

ρε,a(z)e
ε2(w0(z)+v(z)) ≤ C(2 + |z|)−2N−4+δ2(c0+Cδ).(3.10)

Hence, if δ > 0 is sufficiently small, then Hε,a(w0 + v) ∈ X . Similarly, other
terms of P (ε, a, v) belong to X . Moreover, since P (ε, a, v) is regular with
respect to ε, one can easily check that P is C1 in Ωδ. We omit the details. �

Now, let

Γ = P ′
(a,v)(0, 0, 0) : C× Y −→ X.

By direct calculation we obtain

Γ(b, ϕ) = Lϕ− 4φ+b1η − 4φ−b2η,

where

η = ρw0 −
2(4− 2τ)

κ2λ2
ρ2, ψ0(r) =

rN+1

1 + r2N+2
,

φ+(r) = ψ0(r) cos
(
(N + 1)θ

)
, φ−(r) = ψ0(r) sin

(
(N + 1)θ

)
.

Lemma 3.2. We have

(3.11)

∫

R2

ηφ2±dx < 0.

Proof. Let σ = (1 + r2N+2)−2. By direct computation, we obtain

(3.12) Lσ =
16(N + 1)2r4N+2

(1 + r2N+2)4
= 2ρψ2

0.

Then,
∫

R2

ηφ2+dx = π

∫ ∞

0

(
ρw0 −

2(4− 2τ)

κ2λ2
ρ2
)
ψ2
0rdr

= π

∫ ∞

0

(1
2
(Lσ)w0 −

2(4− 2τ)

κ2λ2
ρ2ψ2

0

)
rdr
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= π

∫ ∞

0

(1
2
σLw0 −

2(4− 2τ)

κ2λ2
ρ2ψ2

0

)
rdr

=
π(4− 2τ)

κ2λ2

∫ ∞

0

ρ2
(1
2
σ − 2ψ2

0

)
rdr.

Letting t = r2, we see that
∫ ∞

0

ρ2
(1
2
σ − 2ψ2

0

)
rdr

= 16π(N + 1)4
[ ∫ ∞

0

t2N

(1 + tN+1)5
dt−

∫ ∞

0

5t(3N+1)

(1 + tN+1)6
dt
]

= 16π(N + 1)4
(
1−

2N + 1

N + 1

)∫ ∞

0

t2N

(1 + t(N+1))5
dt < 0.

By a similar argument, we can prove the result for φ−. �

Lemma 3.3. Γ is surjective and KerΓ = {0} × span{φ0, φ+, φ−} ⊂ C × Y ,

where

φ0(r) =
1− r2N+2

1 + r2N+2
.

Proof. First, we recall from that [1] that

Im L = {h ∈ X :

∫

R2

hφ± = 0}, KerL = span{φ0, φ+, φ−}.(3.13)

Given f ∈ X , we define

b1 = −

∫
fφ+

4
∫
ηφ2+

, b2 = −

∫
fφ−

4
∫
ηφ2−

.

By Lemma 3.2, b1 and b2 are well defined. Then,
∫

R2

(f + 4φ+b1η + 4φ−b2η)φ±dx = 0.

Hence, by (3.13) there exists w ∈ Y such that Lw = f + 4φ+b1η + 4φ−b2η. In
other words, Γ(b1 + ib2, w) = f . Thus, Γ is surjective.

Next, suppose that Γ(b1 + ib2, w) = 0. Then, by (3.13),

0 = (Lw, φ+)L2 = (4φ+b1η + 4φ−b2η, φ+)L2 = −4b1

∫

R2

ηφ2+,

which implies by Lemma 3.2 that b1 = 0. Similarly, b2 = 0. Moreover, w ∈
KerL. �

Proof of Theorem 1.2. By Lemma 3.1, P is a C1 map on Ωδ. Moreover, Γ =
P ′
(a,v)(0, 0, 0) is surjective. Since Γ is not injective, we decompose Y = KerL⊕Z

with Z = (KerL)⊥ and denote by Q the restriction of P on R× C× Z. Then,
by Lemma 3.3, Q′

(a,v)(0, 0, 0) : R × C × Z → X is a bijective. Applying the

standard Implicit Function Theorem to the equationQ(ε, a, v) = 0, we conclude
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that there exist ε0 > 0 and a C1-map ε 7→ (aε, vε) ∈ C × Y for |ε| < ε0 such
that Q(ε, aε, vε) = 0. Then, by (3.4) and (3.8)

(3.14) uε(z) := ln ε2 + ln ρε,a(εz) + ε2w0(εz) + ε2vε(εz).

is a solution of (3.2) for 0 < ε < ε0.
It remains to show the estimates (1.15)–(1.16). Since ε 7→ (aε, vε) is C1,

‖vε‖Y → 0 as ε→ 0. Thus, it follows from (3.9) that

|vε(z)| ≤ o(1) ln(2 + |z|) as |z| → ∞,(3.15)

which yields the estimate (1.15) by (3.7).

Next, we prove (1.16). For small δ > 0, Uδ := R2\ ∪d1

j=1 Bδ(pj). Then,

1

κ2

∫

R2

f
(
uε, τ

)
dx = − lim

δ→0

∫

Uδ

∆uεdx.(3.16)

It follows from (3.14) that for z ∈ Uδ,

∆uε = ∆
{
−2 ln

(
1 + |Gε(εz) + aε|

2
)
+ ε2w0(εz) + ε2vε(εz)

}
.

We note that∣∣∣∣
∫

R2

∆
(
vε(εz)

)
dz

∣∣∣∣ ≤
∥∥(1 + |z|)−1− 1

8

∥∥
L2

· ‖∆vε‖X ≤ C‖vε‖Y = o(1).

We also deduce from (3.7) that
∫

R2

∆
(
w0(εz)

)
dz = lim

R→∞

∫

|z|=R

∂

∂r
w0(r)dS = −2πc0.

Moreover,
∫

R2

∆ ln
(
1 + |Gε(εz) + aε|

2
)
dz

= lim
R→∞

∫

|z|=R

∂r|Gε(εz) + aε|
2

1 + |Gε(εz) + aε|2
dS

= lim
R→∞

∫ 2π

0

{ (2N + 2)ε2N+2R2N+1

1 + ε2N+2R2N+2
+O

( 1

R2

)}
Rdθ

= 4π(N + 1).

Inserting these estimates into (3.16), we obtain (1.16). This completes the
proof of Theorem 1.2. �
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