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CONTINUED FRACTION AND DIOPHANTINE EQUATION

Wiem Gadri and Mohamed Mkaouar

Abstract. Our paper is devoted to the study of certain diophantine
equations on the ring of polynomials over a finite field, which are inti-
mately related to algebraic formal power series which have partial quo-
tients of unbounded degree in their continued fraction expansion. In
particular it is shown that there are Pisot formal power series with de-
gree greater than 2, having infinitely many large partial quotients in their
simple continued fraction expansions. This generalizes an earlier result
of Baum and Sweet for algebraic formal power series.

1. Introduction

Let Fq be a finite field of characteristic p with q elements. We consider
Fq[X ], Fq(X) and Fq((X

−1)) as analogues of Z, Q and R respectively. If

w =
∑+∞

n=n0
anX

−n is an element of Fq((X
−1)) with an0

6= 0, we introduce

the absolute value |w| = q−n0 and |0| = 0. Diophantine approximation in
the function field case was initiated by K. Mahler [10]. In the case of real
numbers, it is well known that Liouville’s theorem was the beginning of a
long path, with the works of Thue, Siegel, Dyson and others, leading of the
celebrated Roth’s theorem which was established in 1955. This improvement
can be transposed in fields of power series if the base field has characteristic
zero, as shown by Uchiyama in 1960. But this is not the case in positive
characteristic and consequently the study of rational approximation to algebraic
elements becomes somewhat more complex.

Many examples can be studied. A special case is the one where the algebraic

element w satisfies an equation of the form w = Awps+B
Cwps+D

, where A, B, C and

D belong to Fq[X ], with AD − BC 6= 0, and s is a positive integer. Those
elements have been studied by Baum and Sweet, Mills and Robbins, Thakur,
Voloch, de Mathan [3], [11], [12], [17], [18], and [19]. Pass [14] has shown that
there are algebraic integers with infinitely many large partial quotients. In
particular, his result read as follows:
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Theorem 1.1. Given N > 0, there is an algebraic integer β of degree > 2,
such that

|Qβ − P | <
1

NQ
(1.1)

has infinitely many solutions (P,Q) ∈ N× N.

This generalizes an earlier result of Davenport [5] for algebraic numbers.
In this paper, we consider the analogous problem for the partial quotients of

Pisot formal power series. In particular,we shall improve the following result
of Baum and Sweet [3].

Theorem 1.2. Let d, n ∈ N \ {0}. Then there is an algebraic formal power

series w ∈ F2((X
−1)) of degree 2n + 1 such that the equation

|w −
P

Q
| =

2−d

|Q|2n+1

has infinitely many solutions (P,Q) ∈ F2[X ]× F2[X ].

Theorem 1.3. If I and J are polynomials in F2[X ] with I2
n

+ J /∈ F2, then

the equation

P 2n+1 + IQP 2n + JPQ2n + (IJ + 1)Q2n+1 = 1

has infinitely many polynomial solutions (P,Q) ∈ F2[X ]× F2[X ].

The remainder of the paper is organised in the following way. We gather
some definitions and theorems in Section 2. In Section 3, we generalize Baum
and Sweet results (Theorem 6 and Corollary 7 in [3]). In particular, we give
a new version of Davenport [5] and Pass [14] theorems in the case of formal
power series (Theorem 1.1 and Theorem 1.2). The Section 4 is devoted to the
study of a certain diophantine equations on Fq[X ], which generalizes Baum and
Sweet’s theorem (Theorem 10 in [3]).

2. Formal power series and Pisot element

For w =
∑+∞

n=n0
anX

−n ∈ Fq((X
−1)), we define the integer part [w] of w by

[w] =
0∑

n=n0

anX
−n

and the fractional part of w by

{w} = w − [w] =

+∞∑

n=1

anX
−n.

As in Sprindžuk [16], we have a non-archimedean absolute value |·| on Fq((X
−1)),

that is, for any element w ∈ Fq((X
−1)) of the form

w =

+∞∑

n=n0

anX
−n, (an ∈ Fq).
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We define |w| = q−n0 if w 6= 0 and n0 is the smallest index with an0
6= 0 and

|w| = 0 if w = 0. We know that Fq((X
−1)) is complete and locally compact

with respect to the metric defined by this absolute value.
We denote by Fq((X−1)) an algebraic closure of Fq((X

−1)). We note that the

absolute value has a unique extension to Fq((X−1)). To denote this extended
absolute value, we also use the symbol | · |.

For any nonzero polynomial P (Y ) =
∑d

i=0 AiY
i ∈ Fq[X,Y ], we define the

logarithmic height H(P ) of P by

H(P ) = logq max
0≤i≤d

|Ai| = max
0≤i≤d

deg (Ai),

where logq x means the logarithmic function with base q. For an algebraic

element w ∈ Fq((X
−1)), we denote by H(w) the logarithmic height of its

minimal polynomial.
A Pisot element w ∈ Fq((X

−1)) is an algebraic integer over Fq[X ] with

|w| > 1 whose remaining conjugates in Fq((X−1)) have absolute value strictly
smaller than 1.

In 1962 Bateman and Duquette [2] introduced and characterized Pisot ele-
ment in a field of formal power series. They obtained the following results:

Theorem 2.1. An element w in Fq((X
−1)) is a Pisot element if and only if

its minimal polynomial can be written as P (Y ) = Y s + As−1Y
s−1 + · · ·+ A0,

Ai ∈ Fq[X ] for i = 0, . . . , s − 1, with |As−1| = |w| > 1 and |Ai| < |w| for
i = 0, . . . , s− 2.

Theorem 2.2. An element w ∈ Fq((X
−1)) satisfying |w| > 1 is a Pisot ele-

ment if and only if there exists a λ ∈ Fq((X
−1))\{0} such that limn→+∞{λwn}

= 0; moreover λ can be chosen to belong to Fq(X)(w).

The study of the set P of Pisot element was resumed in 1967 by Grandet-
Hugot [6, 7]. In particular she showed that P is dense in Fq((X

−1)) \ {w :
|w| < 1}. For more information about Pisot element see [4].

3. Continued fractions of formal power series

Let us start with the definition of the continued fraction algorithm. Let
J = {θ ∈ Fq((X

−1)) : |θ| < 1}. We define the map T : J → J by

T (w) =

{
{ 1
w
} if w 6= 0

0 if w = 0.

Every w ∈ J has a unique continued fraction defined as follows

w =
1

A1(w) +
1

A2(w)+ 1

. . .

,
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where A1(w) =
[
1
w

]
and An(w) = A1(T

n−1(w)) for n ≥ 2. For w ∈ Fq((X
−1)),

we put A0(w) = [w] and we have

w = A0(w) +
1

A1(w) +
1

A2(w)+ 1

. . .

.(3.1)

As a shorthand for (3.1) we write

w = [A0(w);A1(w), A2(w), . . .].

As usual, we refer to Pn

Qn
= [A0(w);A1(w), A2(w), . . . , An(w)] (n ≥ 0) as n-th

convergent to w and to An(w) as partial quotient. Note that |An(w)| > 1 if
n 6= 0. Also we have |Qn+1| = |An+1(w)Qn|, so

|Qnw − Pn| = |Qn+1|
−1 = |An+1(w)Qn|

−1 < |Qn|
−1.

We have the following characterization of convergent (see for example [3]): let
P,Q ∈ Fq[X ], Q 6= 0. If w ∈ Fq((X

−1)) and |Qw − P | < |Q|−1, then P
Q

is a convergent of w. The corresponding property in the real case is (see for
instance [8]): let p, q ∈ Z, q 6= 0, if x ∈ R and |qx − p| < |2q|−1, then p

q
is a

convergent of x.
The aim of this section is to improve Baum and Sweet’s theorem stated in

Theorem 1.2.

Theorem 3.1. Let µ, n ∈ N \ {0}, λ ∈ Z and τ ∈ N with τ ≥ λ. Then there

is an algebraic formal power series w ∈ Fq((X
−1)) of degree pn + 1 satisfying

H(w) = µ+ τ and µ = logq |w| such that the equation
∣∣∣∣w −

P

Q

∣∣∣∣ =
p−(λ+µpn)

|Q|pn+1

has infinitely many solutions (P,Q) ∈ Fq[X ]× Fq[X ].

The proof uses the following lemmas.

Lemma 3.2. Let P (Y ) = AdY
d + · · · + A0, with Ai ∈ Fq[X ], Ad 6= 0 and

|Ad−1| > |Ai| for all i 6= d − 1. Then P has only one root w ∈ Fq((X
−1))

satisfying |w| > 1. Moreover [w] = −
[
Ad−1

Ad

]
and all other roots of P in

Fq((X−1)) have an absolute value strictly smaller than 1.

Proof. Let P (Y ) = AdY
d + · · · + A0 such that Ai ∈ Fq[X ] for each i ∈

{0, 1, . . . , d}, Ad 6= 0 and |Ad−1| > |Ai|, for all i 6= d − 1. Let λ = −Ad−1

Ad

and let Z be defined by Y = λZ. We have

(3.2)
−1

Ad−1λd−1
P (λZ) = Zd−1(Z − 1) + L(Z),

where L(Z) = −
∑d−2

j=0
Aj

λd−j−1Ad−1

Zj . We remark that the coefficients of L(Z)

have absolute value strictly smaller than 1. Using Hensel’s lemma [1], we get
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that P (Y ) has a unique root w in Fq((X−1)) such that w = λz and |z− 1| < 1,
moreover w ∈ Fq((X

−1)). From |z − 1| < 1, we have |z| = 1, and since the
coefficients of L(Z) have absolute value strictly smaller than 1

|λ| , then |z− 1| =

|L(z)| < 1
|λ| . Thus the unique root w of P verifies |w − λ| < 1 and therefore

[w] = [λ] = −

[
Ad−1

Ad

]
.

The other roots zi of the polynomial P (λZ) in Fq((X−1)) satisfying |zi−1| ≥ 1.
It is clear that |zi| < 1 because otherwise from (3.2) we get

|zi|
d−1 ≤ |zi|

d−1|zi − 1| = |L(zi)| <
1

|λ|
|zi|

d−2,

consequently |zi| <
1
|λ| < 1, a contradiction.

Then the other roots wi = λzi satisfy |wi| < |λ|, which implies that |wi| <
1. If 1 ≤ |wi| < |λ|, we obtain for any k ∈ {0, 1, . . . , d − 1}, |Ak||wi|

k <

|Ad−1||w|
d−1 and |Ad||wi|

d < |Ad−1||wi|
d−1, hence |P (wi)||Ad−1||wi|

d−1. This
leads to a contradiction with P (wi) = 0. �

Remark 3.3. Let A,B,C ∈ Fq[X ] with degB > 0 and AC 6= 0 then by Lemma
3.2 the polynomial

(3.3) L(Y ) = AY pn+1 +ABCY pn

+ C

has a unique root w ∈ Fq((X
−1)) such that |w| > 1.

We next describe a class of algebraic elements with explicitly given continued
fraction expressions, a special case of which is the unique root w in Fq((X

−1))
of

Y pn+1 +XY pn

+ 1 = 0

whose continued fraction is

w = [−X,Xpn

,−Xp2n

, Xp3n

,−Xp4n

, . . .].

Theorem 3.4 (See [13]). Let α ∈ Fq((X
−1)) be an algebraic element of degree

m over Fq(X) such that [α] 6= 0 and Amαm + · · · + A1α + A0 = 0, with

degAk < degAm−1 for all k ∈ {0, . . . ,m}\{m− 1}. Then [α] = −[Am−1/Am]
and the formal power series h = 1/(α− [α]) is of type (I).

The next corollary is an application of:

Corollary 3.5. Let n ∈ N \ {0}, A,B,C ∈ Fq[X ] with degB > 0, AC 6= 0,

gcd(A,C) = 1 and w ∈ Fq((X
−1)) satisfying |w| > 1 and Awpn+1+ABCwpn

+
C = 0. Then

w = [a0; a1, . . .],

where as = (−1)s+1A
psn−(−1)

s

pn+1 Bpsn

C
p(s+1)n

+(−1)
s

pn+1 .



704 W. GADRI AND M. MKAOUAR

Proof. Let α0 = α, a0 = [α0], P0 = A, Q0 = ABC, R0 = 0, S0 = C and
αs+1 = 1/(αs − [αs]) then using Theorem 3.4, αs is of type (I) and satisfying
the equation Psα

pn+1 +Qsα
pn

+Rsαs + Ss = 0 with

Ps+1 = Psa
pn+1 +Qsa

pn

+Rsas + Ss, Qs+1 = Psa
pn

Rs+1 = Qs + asPs, Ss+1 = Ps, as+1 = −[
Qs+1

Ps+1
].

Using a simple induction on s we prove that

Ps = A
1+(−1)

s

2 C
1−(−1)

s

2 ,

Qs = (−1)sA
1−(−1)

s

2 A
psn+(−1)

spn

pn+1 Bpsn

C
1+(−1)

s

2 C
p(s+1)n

−(−1)
spn

pn+1 ,

Rs = 0, Ss = A
1−(−1)

s

2 C
1+(−1)

s

2

and as required

as = (−1)s+1A
psn−(−1)

s

pn+1 Bpsn

C
p(s+1)n

+(−1)
s

pn+1 . �

The case A = C = 1 in Corollary 3.5 over F2[X ] leads us to the well-known
result due to Baum and Sweet [3].

Corollary 3.6 (Theorem 6, [3]). Let n ∈ N, P,Q ∈ F2[X ] with P +Q2n /∈ F2.

Then the equation

Y 2n+1 +QY 2n + PY + PQ+ 1 = 0

has a unique root w in F2((X
−1)), and

w = [Q;Q22n + P 2n , Q23n + P 22n , . . .].

Proof. To prove Corollary 3.6, let g = 1
w−Q

and observe that

g2
n+1 + (Q2n + P )g2

n

+ 1 = 0,

the desired result now follows from Corollary 3.5. �

Proof of Theorem 3.1. Let w the unique root of (3.3) satisfying |w| > 1 and
w = [a0; a1, . . .], then from Corollary 3.5

as = (−1)s+1A
psn−(−1)

s

pn+1 Bpsn

C
p(s+1)n

+(−1)
s

pn+1 .

If Ps

Qs
is the s-th convergent of w, then

|Q2s| =

2s∏

i=1

|ai|

= |A|
p(2s+1)n

−pn

(pn+1)(pn−1) |B|
p(2s+1)n

−pn

pn−1 |C|
p(2s+2)n

−p2n)

(pn+1)(pn−1) ,
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and

|Q2s+1| =
2s+1∏

i=1

|ai|

= |A|
p(2s+2)n

−1

(pn+1)(pn−1) |B|
p(2s+2)n

−pn

pn−1 |C|
p(2s+3)n

−p2n−pn

(pn+1)(pn−1) .

Therefore

|a2s+1| = |A|
p(2s+1)n

+1

pn+1 |B|p
(2s+1)n

|C|
p(2s+2)n

−1

pn+1

= |A||B|p
n

|C|p
n−1|Q2s|

pn−1.

Hence,

|w −
P2s

Q2s
| =

1

|a2s+1||Q2s|2

= |A|−1|B|−pn

|C|1−pn

|Q2s|
−(pn+1)(3.4)

=
p−(λ+µpn)

|Q2s|p
n+1

,

with τ = deg (A), λ = deg (A)− deg (C) and µ = deg (B) + deg (C),

|w −
P2s+1

Q2s+1
| =

1

|a2s+2||Q2s+1|2

= |BC|−pn

|Q2s+1|
−(pn+1)(3.5)

=
p−µpn

|Qs|p
n+1

,

with µ = deg (B) + deg (C) and λ = τ = 0. �

We next prove that the algebraic element w is of degree pn + 1, we will
need the following lemmas. Liouville’s theorem for algebraic numbers has the
following analogue in Fq((X

−1)):

Lemma 3.7. If w ∈ Fq((X
−1)) is algebraic of degree D over Fq(X), then there

is a constant c > 0 such that
∣∣∣∣w −

P

Q

∣∣∣∣ ≥
c

|Q|D

for all P,Q ∈ Fq[X ].

The proof of Lemma 3.7 can be found in Mahler’s paper [10] and in [3].

Lemma 3.8. Let A,B and C ∈ Fq[X ] with AC 6= 0 and degB ≥ 1. Then the

polynomial

L(Y ) = AY pn+1 +ABCY pn

+ C

is irreducible over Fq(X).
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Proof. Let w ∈ Fq((X
−1)) the unique root of L such that |w| > 1. If w has

degree D < pn+1 and P
Q

is a convergent of w, then by (3.4), (3.5) and Lemma

3.7, there are two constants c, c′ > 0 such that

c

|Q|D
≤

∣∣∣∣w −
P

Q

∣∣∣∣ =
c′

|Q|pn+1
,

for arbitrarily large |Q|, which is a contradiction. �

This completes the proof of Theorem 3.1.

Corollary 3.9. Let µ, n ∈ N \ {0} and λ ∈ N. Then there is a Pisot element

w ∈ Fq((X
−1)) of degree pn + 1 satisfying H(w) = µ = logq |w| such that

∣∣∣∣w −
P

Q

∣∣∣∣ =
p−(λ+µpn)

|Q|pn+1

has infinitely many solutions (P,Q) ∈ Fq[X ]× Fq[X ].

Proof. We observe that (3.3) has a unique Pisot element as solution if A =
1. �

The last corollary improves Pass’s theorem (Theorem 1.1) in the case of
formal power series.

4. Diophantine equation

We prove the following result:

Theorem 4.1. If A, B and C are fixed polynomials in Fq[X ] with AC 6=
0, gcd(A,C) = 1 and degB ≥ 1, then

(E1) AP pn+1 +ABCQP pn

+ CQpn+1 = A

and

(E2) AP pn+1 +ABCQP pn

+ CQpn+1 = C

have infinitely many solutions (P,Q) ∈ Fq[X ]× Fq[X ]. Moreover if P
Q

and P ′

Q′

are two consecutive convergent of the element w in Corollary 3.5, then (P,Q)
is a solution of Ei and (P ′, Q′) is a solution of Ej, where i, j ∈ {1, 2} and

i 6= j.

We will need the following lemmas.

Lemma 4.2. Let w the unique root of (3.3) satisfying |w| > 1. If Ps

Qs
is the

s-th convergent of w, then for all s ∈ N, A|Q2s+1 and C|P2s.

Proof. We have P0 = −BC and Q1 = ABpn

Cpn−1

then we see that C|P0 and
A|Q1 by using an induction on s and the relation

Qs+2 = as+2Qs+1 +Qs for all s ∈ N.(4.1)

This proves the lemma. �



CONTINUED FRACTION AND DIOPHANTINE EQUATION 707

Lemma 4.3. Let n ∈ N∗, A,B,C ∈ Fq[X ] with degB > 0, AC 6= 0,
gcd(A,C) = 1 and

H(Y, Z) = AY pn+1 +ABCY pn

Z + CZpn+1.

Then for all s ∈ N, there exists a polynomial Λs ∈ Fq[X ] such that

H(P2s, Q2s) = a2sΛ2s + C and H(P2s+1, Q2s+1) = a2s+1Λ2s+1 +A,

where Ps

Qs
is an s-th convergent of w the unique root of (3.3) satisfying |w| > 1.

Proof. We have P0 = −BC, P1 = ABpn+1Cpn

+ 1, Q0 = 1 and Q1 =

ABpn

Cpn−1

, then

H(P0, Q0) = C and H(P1, Q1) = A,

using an induction on s and (4.1), this prove the lemma. �

Proof of Theorem 4.1. Let

H(Y, Z) = AY pn+1 +ABCY pn

Z + CZpn+1,

and w the unique root in Fq((X
−1)) of L(Y ) = H(Y, 1) satisfying |w| > 1, then

by writing H(Y, 1) in the form

H(Y, 1) = Awpn

(Y − w) +A(Y +BC)(Y − w)p
n

,

we see that we can conclude from [w] = −BC that

|H(
P

Q
, 1)| = |A||BC|p

n

|w −
P

Q
| for |w −

P

Q
| < 1.

It follows from (3.4) and (3.5) that

|H(
P2s

Q2s
, 1)| = |A||BC|p

n

|w −
P2s

Q2s
| =

|C|

|Q2s|p
n+1

and

|H(
P2s+1

Q2s+1
, 1)| = |A||BC|p

n

|w −
P2s+1

Q2s+1
| =

|A|

|Q2s+1|p
n+1

.

Since

H(P,Q) = Qpn+1H(
P

Q
, 1)

we obtain

|H(P2s, Q2s)| = |C| and |H(P2s+1, Q2s+1)| = |A|,(4.2)

and from Lemma 4.2, we have

C|H(P2s, Q2s) and A|H(P2s+1, Q2s+1).(4.3)

The statements (4.2) and (4.3) now imply that there exists an αs ∈ Fq such
that

H(P2s, Q2s) = α2sC and H(P2s+1, Q2s+1) = α2s+1A.(4.4)



708 W. GADRI AND M. MKAOUAR

Since deg (a2s) > deg (C) and deg (a2s+1) > deg (A), using Lemma 4.3 and
(4.4) we arrive at

Λ2s = Λ2s+1 = 0 and α2s = α2s+1 = 1.

This completes the proof of Theorem 4.1. �

Corollary 4.4 (Theorem 1.3). If I and J are polynomials in F2[X ] with I2
n

+
J /∈ F2, then

P 2n+1 + IQP 2n + JPQ2n + (IJ + 1)Q2n+1 = 1

has infinitely many solutions (P,Q) ∈ F2[X ]× F2[X ].

Proof. Let K(Y ) = Y 2n+1 + IY 2n + JY + (IJ + 1) be a polynomial, with
I2

n

+J /∈ F2, and w the unique root in F2((X
−1)) with |w| > 1 of the polynomial

L(Y ) = H(Y, 1) = Y 2n+1+(I2
n

+J)Y 2n +1. Observe that v = I + 1
w

is a root

of K. If P
Q

is a convergent of v, then Q
P−IQ

is a convergent of w. From Theorem

4.1, (Q,P − IQ) is a solution of (E1) and (E2). Therefore the equation

P 2n+1 + IQP 2n + JPQ2n + (IJ + 1)Q2n+1 = 1

has infinitely many solutions (P,Q) ∈ F2[X ]× F2[X ]. �
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