
Bull. Korean Math. Soc. 53 (2016), No. 3, pp. 681–698
http://dx.doi.org/10.4134/BKMS.b150233
pISSN: 1015-8634 / eISSN: 2234-3016

ON RELATIVE ESSENTIAL SPECTRA OF BLOCK

OPERATOR MATRICES AND APPLICATION

Salma Charfi and Ines Walha

Abstract. In this paper, we investigate relative essential spectra of 2×2
block operator matrix using the Fredholm perturbation theory. Further-
more, an example for two-group transport equations is presented to illus-
trate the validity of the main results.

1. Introduction

Numerous mathematical and physical problems lead to operator pencils, L−
λM (see for example [8, 18]). Recently, the spectral theory of operator pencils
attracts the attention of many mathematicians. Moreover, the motivations
for studying the M -essential spectra of block operator matrix are various and
meaningful in transport theory.

In this paper, we are mainly concerned with the study of the spectral theory
for pencils of the form

(1) L0 − λM :=

(
A B

C D

)
− λ

(
M1 M2

M3 M4

)

considered on the product Banach spaceX×Y, whereM is a bounded operator.
The operator A (resp. D) acts on the Banach space X (resp. Y ) and has the
domainD(A) (resp. D(D)) and the intertwining operatorB (resp. C) is defined
on the domain D(B) (resp. D(C) ) and acts from Y into X (resp. from X into
Y ).

The block operator matrix of the form (1) is densely defined with domain
given by

D(L0 − λM)

:=

{(
x

y

)
∈ (D(A) ∩ D(C)) × (D(B) ∩ D(D)) such that ΓXx=ΓY y

}
,
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where ΓX (resp. ΓY ) is a linear operator acting fromX (resp. Y ) into a Banach
space Z. The closure of the block operator matrix L0, L := L0, is discussed in
details in the paper of [25] under some assumptions on the entries components.
The study of the block operator matrix is the subject of many authors un-
der different assumptions. In this direction some issues may be found in the
literature, we can quote for example [1, 2, 10, 16, 24]. Recently, an account
research and a wide panorama of methods to investigate the spectral theory
of block operator matrices is given in [3, 4, 5, 11, 14, 25]. More precisely, the
description of various essential spectra of a block operator matrix L appears in
[3, 5, 11, 14] to improve and generalize some results given by [1, 2, 24] for block
operator matrices in Banach spaces under some compactness assumptions.

However, it should be noted that several results for the authors cited in the
papers of [1, 2, 4, 14, 24] are aimed at providing methods for dealing with
spectral theory for operator in the form L0 − λM where M = I.

The purpose of this work consists principally in extending results given in
[4] and we concern ourselves exclusively with the investigation of some M -
essential spectra of unbounded 2× 2 block operator matrices for pencils of the
form L0 − λM, where M is a bounded operator defined on the product of two
Banach spaces X ×Y under a coupling condition between the two components
of its elements.

To do this, we firstly establish some results on right and left-Fredholm per-
turbations theory (see Theorems 2.2 and 2.3). Eventually, we dispose different
conditions in terms of the Fredholm, right and left-Fredholm perturbations to
prove the Fredholmness perturbations of block 2 × 2 operator matrix having
the form

(L− λM)−1 − (Lλ0
− λM)−1

(see Section 3), which allows us to investigate the stability of their M -essential
spectra in terms of Schur-complement whose M4-essential spectra is easier to
calculate. Moreover, the use of the M -resolvent, the Fredholm perturbations
theory and the lower factorization allows us to formulate some supplements to
many results presented in [4, 14] and to ameliorate the description of the M -
essential spectra of two-group transport equations without knowing the totality
of the relative essential spectra of the operator A, but only the relative essential
spectra of its restriction which is more general than the one provided by [4, 14].

The present paper consists of four sections: In Section 2, we present some
basic notations and auxiliary lemmas connected to the main body of the paper.
We advise that Section 3 constitutes the main results. Section 4 is devoted to
illustrate our abstract results to two group transport operator in Banach spaces.

2. Preliminary results

Let X and Y be two Banach spaces. Throughout this section, T denotes
a linear operator from X into Y with domain D(T ) ⊂ X and range R(T ) ⊂
Y . By C(X,Y ) (resp. L(X,Y )), we designate the set of all closed, densely
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defined linear operators (resp. the set of all bounded linear operators) from
X into Y and by K(X,Y ) the subset of all compact operators of L(X,Y ). For
T ∈ C(X,Y ), N (T ) denotes the null space of T . The nullity α(T ) of T is
defined as the dimension of N (T ) and the deficient β(T ) of T is defined as the
codimension of R(T ) in Y .

Let S be a non null bounded operator from X into Y. For T ∈ C(X,Y ), we
define the S-resolvent set of T by:

ρS(T ) := {λ ∈ C : T − λS has a bounded inverse}

and the S-spectrum of T by:

σS(T ) := C \ ρS(T ).

In what follows, we need to introduce some important classes of operators.
The set of upper semi-Fredholm operators from X into Y is defined by:

Φ+(X,Y ) = {T ∈ C(X,Y ) : α(T ) <∞ and R(T ) is closed in Y } ,

and the set of lower semi-Fredholm operators from X into Y is defined by:

Φ−(X,Y ) = {T ∈ C(X,Y ) : β(T ) <∞ and R(T ) is closed in Y } .

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ) (resp. Φ±(X,Y ) := Φ+(X,Y ) ∪ Φ−(X,Y ))
denotes the set of Fredholm (resp. semi-Fredholm) operators from X into Y .
If T ∈ Φ(X,Y ), the number i(T ) := α(T )− β(T ) is called the index of T.
The set ΦT,S is defined as:

ΦT,S = {λ ∈ C : T − λS ∈ Φ(X,Y )}.

A complex number λ is in Φ+T,S , Φ−T,S or ΦT,S if T − λS is in Φ+(X,Y ),
Φ−(X,Y ) or Φ(X,Y ), respectively. If X = Y, then L(X,Y ), C(X,Y ),K(X,Y ),
Φ(X,Y ), Φ+(X,Y ) and Φ−(X,Y ) are replaced by L(X), C(X), K(X), Φ(X),
Φ+(X) and Φ−(X) respectively.

Recall the following results established in [20].

Definition 2.1. LetX and Y be two Banach spaces. An operator T ∈ L(X,Y )
is said to have a left (resp. a right) Fredholm inverse if there exists an operator
Tl ∈ L(Y,X) (resp. Tr ∈ L(Y,X)) such that TlT − I ∈ K(X) (resp. TTr − I ∈
K(Y )). The operators Tl (resp. Tr) is called left (resp. right) Fredholm inverse
of T.

We will denote by Φl(X,Y ) (resp. Φr(X,Y )) the set of operators which
have left (resp. right) Fredholm inverse.

We denote the sets Φb
l (X,Y ), Φb

r(X,Y ), Φb(X,Y ), Φb
+(X,Y ) and Φb

−(X,Y )
by Φl(X,Y ) ∩ L(X,Y ), Φr(X,Y ) ∩ L(X,Y ), Φ(X,Y ) ∩ L(X,Y ), Φ+(X,Y ) ∩
L(X,Y ) and Φ−(X,Y ) ∩ L(X,Y ) respectively.

Our concern in this paper is mainly the following S-essential spectra:

σel,S(T ) := {λ ∈ C : T − λS /∈ Φl(X,Y )} = C \ ΦlT,S ,

σer,S(T ) := {λ ∈ C : T − λS /∈ Φr(X,Y )} = C \ ΦrT,S ,
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σe4,S(T ) := {λ ∈ C : T − λS /∈ Φ(X,Y )} = C \ ΦT,S ,

σe5,S(T ) := C \ ρ5,S(T ),

σe6,S(T ) := C \ ρ6,S(T ),

where ρ5,S(T ) := {λ ∈ ΦT such that i(T − λS) = 0} and ρ6,S(T ) denotes the
set of those λ ∈ ρ5,S(T ) such that all scalars near of λ are in ρS(T ).

We mention that if S = I, we recover the usual definition of the essential
spectra of a closed densely defined linear operator A, that is, the subsets σel,I(·)
and σer,I(·) are respectively the left and right essential spectra [20], σe4,I(·) is
the Wolf essential spectrum [26], σe5,I(·) is the Schechter essential spectrum
[23] and σe6,I(·) denotes the Browder essential spectrum [21].

We turn our attention to the following inclusions:

σe3,S(T ) = σe1,S(T ) ∩ σe2,S(T ) ⊆ σe4,S(T ) ⊆ σe5,S(T ) ⊆ σe6,S(T ),

and

(2) σe1,S(T ) ⊂ σel,S(T ) ⊂ σe4,S(T ), σe2,S(T ) ⊂ σer,S(T ) ⊂ σe4,S(T ),

where

σe1,S(T ) := {λ ∈ C : T − λS /∈ Φ+(X,Y )} = C \ Φ+T,S ,

σe2,S(T ) := {λ ∈ C : T − λS /∈ Φ−(X,Y )} = C \ Φ−T,S ,

σe3,S(T ) := {λ ∈ C : T − λS /∈ Φ±(X,Y )} = C \ Φ±T,S .

Definition 2.2. LetX and Y be two Banach spaces. An operator T ∈ L(X,Y )
is said to be weakly compact if T (M) is relatively weakly compact in Y for every
bounded subset M ⊂ X.

The family of weakly compact operators from X into Y is denoted by
W(X,Y ). If X = Y the family of weakly compact operators on X, W(X) :=
W(X,X) is a closed two-sided ideal of L(X) containing K(X) (cf. [7]).

Definition 2.3. Let X and Y be two Banach spaces. An operator S ∈ L(X,Y )
is said to be strictly singular if the restriction of S to any infinite-dimensional
subspace of X is not an homeomorphism.

Let S(X,Y ) denote the set of strictly singular operators from X to Y.
The concept of strictly singular operators was introduced in the pioneering

paper by T. Kato [15] as a generalization of the notion of compact operators.
For a detailed study of the properties of strictly singular operators, we refer
to [15]. Note that S(X,Y ) is a closed subspace of L(X,Y ). In general, if
X = Y, S(X) := S(X,X) is a closed two-sided ideal of L(X) containing K(X).
If X is a Hilbert space, then S(X) = K(X). The class of weakly compact
operators in L1-spaces (resp. C(Ω)-spaces with Ω is a compact Hausdroff space)
is nothing else than the family of strictly singular operators on L1-spaces (resp.
C(Ω)-spaces) (see [22, Theorem 1]).

In the following, we introduce some definitions on Fredholm perturbations:
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Definition 2.4. Let X and Y be two Banach spaces and let F ∈ L(X,Y ),
(i) F is called a Fredholm perturbation if U + F ∈ Φ(X,Y ) whenever U ∈

Φ(X,Y ).
(ii) F is called a left (resp. right) Fredholm perturbation if U+F ∈ Φl(X,Y )

(resp. U + F ∈ Φr(X,Y )) whenever U ∈ Φl(X,Y ) (resp. U + F ∈ Φr(X,Y )).

We denote by F(X,Y ) the set of Fredholm perturbations and by Fl(X,Y )
(resp. Fr(X,Y )) the set of left (resp. right) Fredholm perturbations.

If X = Y we write F(X),Fl(X) and Fr(X) for F(X,X),Fl(X,X) and
Fr(X,X) respectively.

Remark 2.1. Let Φb(X,Y ),Φb
l (X,Y ) and Φb

r(X,Y ) denote respectively the sets
Φ(X,Y )∩L(X,Y ), Φl(X,Y )∩L(X,Y ) and Φr(X,Y )∩L(X,Y ). If in Definition
2.4 we replace Φ(X,Y ), Φl(X,Y ) and Φr(X,Y ) by Φb(X,Y ), Φb

l (X,Y ) and
Φb

r(X,Y ) we obtain the sets Fb(X,Y ),Fb
l (X,Y ) and Fb

r (X,Y ) respectively.

The set of Fredholm perturbations Fb(X,Y ) was introduced and investi-
gated in [9]. In particular, it is shown that Fb(X,Y ) is a closed subset of
L(X,Y ) and if X = Y , then Fb(X) := Fb(X,X) is a closed two-sided ideal of
L(X).

In [13], it was proved that if X = Y, then Fb
l (X) := Fb

l (X,X) and Fb
r (X) :=

Fb
r (X,X) are two-sided ideals of L(X), satisfying:

K(X,Y ) ⊆ Fb
l (X,Y ) ⊆ Fb(X,Y )

and

K(X,Y ) ⊆ Fb
r (X,Y ) ⊆ Fb(X,Y ).

Let us recall the following results on Fredholm perturbations theory of 2× 2
block operator matrix introduced by [13].

Theorem 2.1 ([13, Theorems 3.1-3.2]). Let X1 and X2 be two Banach spaces

and F :=
(
F11 F12

F21 F22

)
where Fij ∈ L(Xj , Xi), i, j = 1, 2. Then

(i) F ∈ Fb(X1 ×X2) if and only if Fij ∈ Fb(Xj , Xi), ∀i, j = 1, 2.
(ii) F ∈ Fb

l (X1 ×X2) if and only if Fij ∈ Fb
l (Xj , Xi), ∀i, j = 1, 2.

(iii) F ∈ Fb
r (X1 ×X2) if and only if Fij ∈ Fb

r (Xj , Xi), ∀i, j = 1, 2.

Theorem 2.2. Let A ∈ C(X,Y ) and S ∈ L(X,Y ). Then

(i) If F ∈ Fb
r (X,Y ), then σer,S(F +A) = σer,S(A).

(ii) If F ∈ Fb
l (X,Y ), then σel,S(F +A) = σel,S(A).

Proof. (i) Let λ ∈ C such that λS − A ∈ Φr(X,Y ). Since F ∈ Fb
r (X,Y ), then

λS − A ∈ Φb
r(X,Y ) if and only if λS − A − F ∈ Φb

r(X,Y ). Hence σer,S(A) =
σer,S(A+ F ).

Arguing as above we derive the item (ii). �

To close this section, we state a straight forward, but useful result to provide
the stability of the S-right and S-left spectra.
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Theorem 2.3. Let X be a Banach space, T1, T2 two closed densely defined

linear operators on X and S an invertible operator on X.

(i) If for some λ0 ∈ ρS(T1) ∩ ρS(T2), the operator

(λ0S − T1)
−1 − (λ0S − T2)

−1 ∈ Fb
r (X),

then

σer,S(T1) = σer,S(T2).

(ii) If for some λ0 ∈ ρS(T1) ∩ ρS(T2), the operator

(λ0S − T1)
−1 − (λ0S − T2)

−1 ∈ Fb
l (X),

then

σel,S(T1) = σel,S(T2).

Proof. Let λ ∈ C \ {λ0}. The proof of this theorem is based on the following
relation

T1 − λS = (λ− λ0)S
[
(λ− λ0)

−1S−1 − (T1 − λ0S)
−1

]
(T1 − λ0S).

Since T1 − λ0S is one to one and onto, then

α(T1 − λS) = α
[
(λ − λ0)

−1S−1 − (T1 − λ0S)
−1

]
,

R(T1 − λS) = R
[
(λ − λ0)

−1S−1 − (T1 − λ0S)
−1

]
and

β(T1 − λS) = β
[
(λ − λ0)

−1S−1 − (T1 − λ0S)
−1

]
.

This shows that λ ∈ ΦT1,S,r (resp. λ ∈ ΦT1,S,l) if and only if (λ − λ0)
−1 ∈

Φ(T1−λ0S)−1,S−1,r (resp. (λ− λ0)
−1 ∈ Φ(T1−λ0S)−1,S−1,l).

Combining Theorem 2.2 and the fact that (λ0S − T1)
−1 − (λ0S − T2)

−1 ∈
Fb

r (X) (resp. (λ0S − T1)
−1 − (λ0S − T2)

−1 ∈ Fb
l (X)), we get

λ ∈ σer,S(T1) ⇐⇒(λ − λ0)
−1 ∈ σer,S−1((T1 − λ0S)

−1)

= σer,S−1((T2 − λ0S)
−1)

⇐⇒λ ∈ σer,S(T2)

(resp. λ ∈ σel,S(T1) ⇐⇒(λ− λ0)
−1 ∈ σel,S−1 ((T1 − λ0S)

−1)

= σel,S−1((T2 − λ0S)
−1)

⇐⇒λ ∈ σel,S(T2)).

This achieves the proof of theorem. �

3. Fredholm perturbations of block operators matrices and stability

of their M-essential spectra

Let X , Y and Z be three Banach spaces and ΓX (resp. ΓY ) be the linear
operator from X (resp. Y ) into Z. In the Banach space X × Y , we consider
the linear operator L0 − λM given by the block operator matrix

L0 − λM :=

(
A B

C D

)
− λ

(
M1 M2

M3 M4

)
,
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whereM is a bounded operator, A (resp. D) is a densely defined closable (resp.
closed) linear operator in X (resp. Y ) and B (resp. C) is a linear operator
acts from Y (resp. X) into X (resp. Y ). The domain of L0 − λM is given by:

D(L0 − λM)

:=

{(
x

y

)
∈ (D(A) ∩D(C)) × (D(B) ∩ D(D)) such that ΓXx = ΓY y

}
.

The main purpose of this section is to discuss the M -essential spectra of the
closure of the matrix operator L0 denoted by L and defined on the product of
Banach spaces X × Y . First of all, we shall make some hypotheses.

Let X,Y and Z three Banach spaces and assume that:

(H1) A is a closable, densely defined linear operator.
It follows from this hypothesis that, D(A), equipped with the graph
norm ‖x‖A = ‖x‖ + ‖Ax‖ can be completed to a Banach space XA

which coincides with D(A) the domain of the closure of A.
(H2) D(A) ⊂ D(ΓX) ⊂ XA and ΓX is bounded as a mapping from XA into

Z.

(H3) The set D(A) ∩ N (ΓX) is dense in X with ρM1
(A1) 6= ∅ for A1 :=

A |D(A)∩N (ΓX) .

Remark 3.1. From (H1)-(H3), one can easily check that ΓX(D(A1)) = {0}
and that the operator A1 is closed.

Now, let us recall the following lemma:

Lemma 3.1 ([25, Lemma 3.1]). Assume that the hypotheses (H1)-(H3) are

satisfied. Then, for any λ ∈ ρM1
(A1), the following assertions hold:

(i) D(A) := D(A1) ⊕ N (Aλ,M1
), where the operator Aλ,M1

is defined on

D(A) by Aλ,M1
:= (A− λM1).

(ii) The restriction Γλ := ΓX |N (Aλ,M1
) is injective.

(iii) R(Γλ) = ΓX(N (Aλ,M1
)) = ΓX(D(A)) does not depend on λ.

As a direct consequence of the last lemma, we let, for λ ∈ ρM1
(A1), the following

operator Kλ defined by:

Kλ := (Γλ)
−1 := (ΓX |N (Aλ,M1

))
−1 : ΓX(D(A)) −→ N (Aλ,M1

).

In other words, Kλz = x means that x ∈ D(A), Aλ,M1
x = 0 and ΓXx = z.

Lemma 3.2 ([25, Lemma 3.2]). For every λ, µ ∈ ρM1
(A1) and under the

assumptions (H1)-(H3), we have:

(3) Kλ −Kµ = (λ− µ)(A1 − λM1)
−1M1Kµ.

If Kλ is closable for some λ ∈ ρM1
(A1), then it is closable for all λ, with closure

satisfying

Kλ −Kµ = (λ− µ)(A1 − λM1)
−1M1Kµ.

Now, we suppose that:
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(H4) D(A) ⊂ D(C) ⊂ XA and C(A1 − λM1)
−1 is a bounded operator from

XA into Y .

Remark 3.2. (i) Combining the closed graph theorem with the above assump-
tion, we infer that, for λ ∈ ρM1

(A1), the operator F (λ) := (C − λM3)(A1 −
λM1)

−1 is bounded from X into Y .
(ii) If the assumptions (H1)-(H3) are satisfied, then for λ ∈ ρM1

(A1) and
x ∈ D(A), we have

(A− λM1)x = (A1 − λM1)(I −KλΓX)x.

In addition, we will assume that:

(H5) For some (hence for all) λ ∈ ρM1
(A1), Kλ is a bounded operator from

ΓX(D(A)) into X, its extension by continuity to ΓX(D(A)) is denoted
by Kλ.

(H6) D ∈ C(Y ) with ρM4
(D) 6= ∅.

(H7) D(B) ∩ D(D) ⊂ D(ΓY ), the set

Y1 := {y ∈ D(B) ∩ D(D) such that ΓY y ∈ ΓX(D(A))}

is dense in Y . We denote by Γ
0

Y the continuous extension of ΓY |Y1
on

the all space Y.
(H8) The operator B is densely defined and for some (hence for all) λ ∈

ρM1
(A1), the operator (A1 − λM1)

−1B is bounded on its domain.
For λ ∈ ρM1

(A1), the operator Sλ := D + (C − λM3)[KλΓY −
(A1 − λM1)

−1(B − λM2)] is defined on the set Y1, which is dense in Y
according to (H7).

We also introduce the following assumptions:

(H9) For some (hence for all) λ ∈ ρM1
(A1), the operator C[−KλΓY + (A1 −

λM1)
−1B] is bounded on Y2 where

Y2 := {y ∈ D(B) ∩D(ΓY ) such that ΓY y ∈ ΓX(D(A))}

is dense in Y such that the restriction of ΓY to this set is bounded as
an operator from Y into Z.

(H10) The set Y1 is a core of D.

Having formulate the above assumptions, the following theorem holds:

Theorem 3.1. Under the assumptions (H1)-(H10), the operator L0 is closable

with closure

L = λM +

(
I 0

F (λ) I

)(
A1 − λM1 0

0 D +Rλ − λM4

)(
I G(λ)
0 I

)
,

(4)

where

G(λ) = −KλΓ
0

Y + (A1 − λM1)−1(B − λM2),

and

Rλ = −(C − λM3)[−KλΓY + (A1 − λM1)
−1(B − λM2)].
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Proof. Taking account of assumptions (H3) and (H6), we can easily check that
A1 and D are closed operators.

Obviously, combining the fact that C[−KλΓY +(A1−λM1)
−1B] is bounded

and densely defined on Y2 with the boundedness of the operators M2 and M3,
we deduce that, for λ ∈ ρM1

(A1), the operator

(C − λM3)[−KλΓY + (A1 − λM1)−1(B − λM2)]

is bounded, everywhere defined and hence it is bounded on the dense set Y2.
This together with the fact that Y1 is a core of D, we conclude that Sλ is

closable for every λ ∈ ρM1
(A1) with closure

(5)
Sλ = D − (C − λM3)[−KλΓY + (A1 − λM1)−1(B − λM2)]

= D +Rλ.

Now, applying [25, Theorem 3.1], we deduce that the operator L0 is closable
and its closure L := L0 is given by (4). �

Remark 3.3. Under the assumptions (H1)-(H10), Eq. (5) allows us to write,
for λ ∈ ρM1

(A1) ∩ ρM4
(D) ∩ ρM4

(Sλ), the M4-resolvent of the operator Sλ as:

(Sλ − λM4)
−1 = (D − λM4)

−1 + (Sλ − λM4)
−1 − (D − λM4)

−1

= (D − λM4)
−1 + (Sλ − λM4)

−1[D − Sλ](D − λM4)
−1

= (D − λM4)
−1 − (Sλ − λM4)

−1Rλ(D − λM4)
−1

or

(Sλ − λM4)
−1 = (D − λM4)

−1 − (D − λM4)
−1(Sλ −D)(Sλ − λM4)

−1

= (D − λM4)
−1 − (D − λM4)

−1Rλ(Sλ − λM4)
−1.

Now, we are in the position to express the main result of this section based
on Fredholm perturbations theory to describe the M -essential spectra of a
block operator matrix L. To do this, we introduce for an arbitrary fixed λ0 ∈
ρM1

(A1), the following block diagonal matrix Lλ0
:

Lλ0
:=

(
A1 0
0 D +Rλ0

)
=

(
A1 0
0 Sλ0

)
.

Theorem 3.2. Assume that the assumptions (H1)-(H10) are fulfilled. Then,

if for some (hence for all) λ0 ∈ ρM1
(A1) ∩ ρM4

(D), we have:
(i) M2, M3, (D − λ0M4)

−1C(A1 − λ0M1)
−1 and

[−Kλ0
Γ
0

Y +(A1 − λ0M1)−1B](D−λ0M4)
−1 are Fredholm perturbations, then,

for λ ∈ ρM (L) ∩ ρM (Lλ0
),

(L− λM)−1 − (Lλ0
− λM)−1 ∈ Fb(X × Y ),

in particular,

σe4,M (L) = σe4,M1
(A1) ∪ σe4,M4

(D +Rλ0
),

σe5,M (L) ⊆ σe5,M1
(A1) ∪ σe5,M4

(D +Rλ0
).
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If Cσe4,M1
(A1) is connected, then

σe5,M (L) = σe5,M1
(A1) ∪ σe5,M4

(D +Rλ0
).

Moreover, if Cσe5,M (L) and Cσe5,M4
(D +Rλ0

) are connected, then

σe6,M (L) = σe6,M1
(A1) ∪ σe6,M4

(D +Rλ0
).

(ii) M2,M3, (D − λ0M4)
−1C(A1 − λ0M1)

−1 and

[−Kλ0
Γ
0

Y + (A1 − λ0M1)−1B](D−λ0M4)
−1 are right-Fredholm perturbations,

then, for λ ∈ ρM (L) ∩ ρM (Lλ0
),

(L− λM)−1 − (Lλ0
− λM)−1 ∈ Fb

r (X × Y ),

in particular,

σer,M (L) = σer,M1
(A1) ∪ σer,M4

(D +Rλ0
).

(iii) M2,M3, (D − λ0M4)
−1C(A1 − λ0M1)

−1 and

[−Kλ0
Γ
0

Y + (A1 − λ0M1)−1B](D − λ0M4)
−1 are left-Fredholm perturbations,

then, for λ ∈ ρM (L) ∩ ρM (Lλ0
),

(L− λM)−1 − (Lλ0
− λM)−1 ∈ Fb

l (X × Y ),

in particular,

σel,M (L) = σel,M1
(A1) ∪ σel,M4

(D +Rλ0
).

Proof. Let λ0 ∈ ρM1
(A1) and λ ∈ C such that λ ∈ ρM (L)∩ρM (Lλ0

). According
to Eq. (4) and Remark 3.3, the representation of (L−λM)−1− (Lλ0

−λM)−1

can be written as:

(L − λM)−1 − (Lλ0
− λM)−1(6)

=





G(λ)(D − λM4)
−1F (λ) −G(λ)(D − λM4)

−1

−G(λ)(Sλ − λM4)
−1Rλ(D − λM4)

−1F (λ) +G(λ)(D − λM4)
−1Rλ(Sλ − λM4)

−1

−(D − λM4)
−1F (λ) (Sλ − λM4)

−1 − (Sλ0
− λM4)

−1

−(Sλ − λM4)
−1Rλ(D − λM4)

−1F (λ)




.

Based on Theorems 2.1 and 2.3, we will prove the Fredholmness perturbation
of (L − λM)−1 − (Lλ0

− λM)−1, hence it remains to show that all entries of
this block operator matrix are Fredholm perturbations.

(i) For details the proof of this assertion, we infer from the assumptions that:

(D − λM4)
−1F (λ) = (D − λM4)

−1C(A1 − λM1)
−1

− λ(D − λM4)
−1M3(A1 − λM1)

−1

and

G(λ)(D − λM4)
−1

= [−KλΓ
0

Y + (A1 − λM1)−1(B − λM2)](D − λM4)
−1

= [−KλΓ
0

Y + (A1 − λM1)−1B − λ(A1 − λM1)
−1M2](D − λM4)

−1
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= [−KλΓ
0

Y + (A1 − λM1)−1B](D − λM4)
−1

− λ(A1 − λM1)
−1M2(D − λM4)

−1

are Fredholm perturbations. According the boundedness property of the oper-
ators G(λ), (Sλ − λM4)

−1 and Rλ with Proposition 2 in [9], we get the Fred-
holmness perturbations of each operators G(λ)(D − λM4)

−1F (λ), G(λ)(Sλ −
λM4)

−1Rλ(D − λM4)
−1F (λ), G(λ)(D − λM4)

−1Rλ(Sλ − λM4)
−1 and (Sλ −

λM4)
−1Rλ(D − λM4)

−1F (λ).
Analogously, one can see that the following right lower corner

(Sλ − λM4)
−1 − (Sλ0

− λM4)
−1

= (Sλ − λM4)
−1(Sλ0

− Sλ)(Sλ0
− λM4)

−1

= (Sλ − λM4)
−1(Rλ0

−Rλ)(Sλ0
− λM4)

−1

= (λ− λ0)(Sλ − λM4)
−1F (λ)M1G(λ0)(Sλ0

− λM4)
−1

− (λ− λ0)(Sλ − λM4)
−1M3G(λ0)(Sλ0

− λM4)
−1

+ (λ0 − λ)(Sλ − λM4)
−1F (λ)M2(Sλ0

− λM4)
−1

= (λ− λ0)(D − λM4)
−1F (λ)M1G(λ0)(Sλ0

− λM4)
−1

− (λ− λ0)(Sλ − λM4)
−1Rλ(D − λM4)

−1F (λ)M1G(λ0)(Sλ0
− λM4)

−1

− (λ− λ0)(Sλ − λM4)
−1M3G(λ0)(D − λ0M4)

−1

+ (λ− λ0)(Sλ − λM4)
−1M3G(λ0)(D − λ0M4)

−1Rλ0
(Sλ0

− λM4)
−1

+ (λ0 − λ)(D − λM4)
−1F (λ)M2(Sλ0

− λM4)
−1

− (λ0 − λ)(Sλ − λM4)
−1Rλ(D − λM4)

−1F (λ)M2(Sλ0
− λM4)

−1

is a Fredholm perturbation since it is the product of bounded operators and the
Fredholm perturbation operators (D− λM4)

−1F (λ) and G(λ0)(D− λ0M4)
−1.

Hence, according to [12, Theorem 2.2], we get

σe4,M (L) = σe4,M (Lλ0
) = σe4,M1

(A1) ∪ σe4,M4
(D +Rλ0

),

with

i(L− λM) = i(A1 − λM1) + i(D +Rλ0
− λM4) = 0.

Hence, from these two equalities, we have

σe5,M (L) ⊆ σe5,M1
(A1) ∪ σe5,M4

(D +Rλ0
),

According to [12, Lemma 2.1], we get

σe5,M (L) = σe5,M (Lλ0
) = σe5,M1

(A1) ∪ σe5,M4
(D +Rλ0

),

and

σe6,M (L) = σe6,M (Lλ0
) = σe6,M1

(A1) ∪ σe6,M4
(D +Rλ0

).

The use of Theorems 2.1, 2.2 and 2.3 allows us to reach the results of assertions
(ii) and (iii) in a similar ways as in (i). �
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Remark 3.4. It is noted that, in the paper [14] the authors supposed that the

operators −KλΓ
0

Y + (A1 − λ)−1B and C(A1 − λ)−1 are Fredholm perturba-
tions. But in our case, we consider a weaker condition and we suppose only that

[−KλΓ
0

Y + (A1 − λM1)−1(B − λM2)](D − λM4)
−1 and (D − λM4)

−1C(A1 −
λM1)

−1 are Fredholm perturbations in order to investigate the M -essential
spectra of the operator L in term of its Schur-complement whose M4-essential
spectrum is easier to calculate. So, Theorem 3.2 may be regarded as an exten-
sion of [14, Theorem 3.3] to a larger class of operators.

The notion of Fredholm perturbations theory plays a crucial role in spectral
theory. This notion is tested for two-group transport equations and is applica-
ble to propose an abstract framework for the computation of the M -essential
spectra of a one-dimensional problem of transport operator.

4. Application to two-group transport equations

In this section, we will apply our main results to study the M -essential
spectra of a problem of transport equations acting in the space

X ×X := L1([−a, a]× [−1, 1]; dxdv)× L1([−a, a]× [−1, 1]; dxdv), a > 0,

and given by the following matrix of two-group transport operators:

L− λM :=

(
T1 − λM1 K12 − λM2

K21 − λM3 TH
2 +K22 − λM4

)
.

The operator T1 is the closed linear operator defined by:





T1 : D(T1) ⊆ X −→ X

ψ −→ T1ψ(x, v) = −v
∂ψ

∂x
(x, v) − σ1(v)ψ(x, v)

D(T1) := W := {ψ ∈ X : v
dψ

dx
∈ X}

and TH
2 is the steaming operator:





TH
2 : D(TH

2 ) ⊆ X −→ X

ψ −→ TH
2 ψ(x, v) = −v

∂ψ

∂x
(x, v) − σ2(v)ψ(x, v)

D(TH
2 ) =

{
ψ ∈ W : ψi = Hψo

}
.

The collision frequency σj(·) ∈ L∞(−1, 1), ψo and ψi represent respectively the
outgoing and the incoming fluxes related by the boundary operator H . ψo and
ψi belong respectively to the spaces

Xo := L1({−a} × [−1, 0], |v|dv)× L1({a} × [0, 1], |v|dv) = Xo
1 ×Xo

2

and

X i := L1({−a} × [0, 1], |v|dv)× L1({a} × [−1, 0], |v|dv) = X i
1 ×X i

2
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(see [6] for more details). The bounded operators Kij , (i, j) ∈ {(1, 2), (2, 1),
(2, 2)} are defined on X by:

(7)






Kij : X −→ X

ψ −→ Kij ψ(x, v) =

∫ 1

−1

κij(x, v, v
′) ψ(x, v′) dv′,

with kernels κij assumed to be measurable and the coefficients Mi are defined
by: {

Mi : X −→ X

ψ −→Miψ(x, v) = ηi(v)ψ(x, v), i = 1, 4

where ηi(·) ∈ L∞(−1, 1) and M2,M3 are bounded operators on X .
We define

λ∗j := inf
v∈(−1,1)

σj(v), j = 1, 2

and
µ∗
j := inf

v∈(−1,1)
ηj(v), j = 1, 4

and we assume that µ∗
j > 0, j = 1, 4.

To verify the hypotheses of Theorem 3.2, we shall define the operator L−λM
on the domain:

D(L− λM) :=

{(
ψ1

ψ2

)
∈ W ×D(TH

2 ) : ψi
1 = ψi

2

}

and we introduce the boundary operators ΓX and ΓY as follows:
{

ΓX : W −→ X i

ψ1 7−→ ψi
1,

and

{
ΓY : W −→ X i

ψ2 7−→ ψi
2 = Hψo

2 .

Let A1 be the closed, densely defined linear operator with a non empty M1-
resolvent set defined as:{

A1 := T1,

D(A1) = {ψ1 ∈ D(T1) : ψ
i
1 = 0}.

In order to verify assumption (H5), we will determine the solution of the equa-
tion:

(T1 − λM1)ψ1 = 0 for ψ1 ∈ W .

A short computation shows that the operator Kλ is bounded by (µ∗
1Reλ)

−1

and is defined on X i by:





Kλ : X i −→ X,Kλu := χ(0,1)(v)K
+
λ u+ χ(−1,0)(v)K

−
λ u with

(K−
λ u)(x, v) := u(a, v) e−

(σ1(v)+µ1λ)|a−x|

|v| , v ∈ (−1, 0)

(K+
λ u)(x, v) := u(−a, v)e−

(σ1(v)+µ1λ)|a+x|

|v| , v ∈ (0, 1).

Consider the Schur-complement of the matrix L−λM, which is formally given
by the following expression:

Sλ := TH
2 +K22 − (K21 − λM3)[−KλΓY + (T1 − λM1)

−1(K12 − λM2)]

for λ ∈ ρM1
(T1).
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Remark 4.1. It is easy to see that D(Sλ) is a core for TH
2 +K22 since TH

2 +K22

is a closed, densely defined operator with a nonempty M4-resolvent set.

In view of the previous remark, it is not difficult to see that Sλ can be
written for λ ∈ ρM1

(T1) ∩ ρM4
(TH2

+K22) ∩ ρM4
(Sλ), in the two ways:

(8)
(Sλ−λM4)

−1 = (TH2
+K22−λM4)

−1− (Sλ−λM4)
−1Rλ(TH2

+K22−λM4)
−1

or
(9)
(Sλ−λM4)

−1 = (TH2
+K22−λM4)

−1−(TH2
+K22−λM4)

−1Rλ(Sλ−λM4)
−1,

where

Rλ := −(K21 − λM3)[−KλΓY + (T1 − λM1)
−1(K12 − λM2)].

Notice that the defined collision operators K12,K21 and K22 act only on the
velocity v′, so x may be seen, simply, as a parameter in [−a, a]. Then, we will
consider each of these operators as a function

Kij(·) : x ∈ [−a, a] −→ K(x) ∈ L(L1([−1, 1], dv).

Definition 4.1 ([19]). A collision operator Kij in the form (7), is said to be
regular if it satisfies the following conditions:






− the function Kij(·) is mesurable,
− there exists a compact subset C ⊂ L(L1([−1, 1], dv)) such that :
Kij(x) ∈ C a.e. on [−a, a],

− Kij(x) ∈ K(L1([−1, 1], dv)) a.e. on [−a, a]

where K(L1([−1, 1], dv)) is the set of compact operators on L1([−1, 1], dv).

We recall the following lemma established in [12].

Lemma 4.1. Let λ ∈ ρM1
(T1).

(i) If κ21(x,v,v
′)

|v′| defines a regular operator, then the operator

K21(T1 − λM1)
−1

is a weakly compact operator on X.

(ii) If K12(x, v, v
′) defines a regular operator, then the operator

(T1 − λM1)
−1K12

is weakly compact on X.

As a consequence for the previous lemma, the following result holds:

Lemma 4.2. Let λ ∈ ρM1
(T1).

(i) If M3 is a Fredholm perturbation on X with the kernel
κ21(x,v,v

′)
|v′| defines

a regular operator, then (TH2
+K22 − λM4)

−1F (λ) is a Fredholm perturbation

on X.
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(ii) If M2 is a Fredholm perturbation on X and K12 is a regular operator,

then the operator (T1−λM1)
−1(K12−λM2)(TH2

+K22−λM4)
−1 is a Fredholm

perturbation on X.

Remark 4.2. It follows from Theorem 3.1 in [22] that W(X) = S(X).
If 1 < p <∞, Xp is reflexive and then L(Xp) = W(Xp). On the other hand,

it follows from [9, Theorem 5.2] that K(Xp) ( S(Xp) ( W(Xp) ( F(Xp) with
p 6= 2. For p = 2 we have K(Xp) = S(Xp) = W(Xp) = F(Xp).

Now, let us denote by:

Lλ0
:=

(
T1 0
0 TH2

+K22 +Rλ0

)
.

The Fredholm perturbation theory is an important tool to describe the M -
essential spectra and especially theM -essential spectra of an transport operator
matrix L. In order to describe these subsets, for λ ∈ ρM (L) and λ ∈ ρM (Lλ0

),
we let:

(L− λM)−1 − (Lλ0
− λM)−1

=




G(λ)[Sλ − λM4]

−1F (λ) −G(λ)[Sλ − λM4]
−1

−[Sλ − λM4]
−1F (λ) [Sλ − λM4]

−1 − [Sλ0
− λM4]

−1





where {
G(λ) = −KλΓY + (T1 − λM1)

−1(K12 − λM2)
F (λ) = (K21 − λM3)(T1 − λM1)

−1.

The M -essential spectra of two-group transport operators can be described in
the next theorem under additive Fredholm perturbations.

Theorem 4.1. If the operators H,M2,M3 are Fredholm perturbations, K12,

K21, K22 are regular operators and if
κ21(x,v,v

′)
|v′| is regular, then

(L− λM)−1 − (Lλ0
− λM)−1 ∈ Fb(X ×X)

in particular,

σek,M (L) = {λ ∈ C : Reλ ≤ −min(
λ∗1
µ∗
1

,
λ∗2
µ∗
4

)}, 4 ≤ k ≤ 6, r, l.

Proof. According to Theorem 2.1, to characterize the Fredholm perturbations
of the block operator matrix (L−λM)−1−(Lλ0

−λM)−1, it remains to provide
the same property for all entries of this block operator matrix. To do this, for
λ ∈ ρM1

(T1) ∩ ρM4
(TH

2 + K22) ∩ ρM4
(Sλ), we consider the operator (Sλ −

λM4)
−1F (λ) which can be expressed from Eq. (8) as:

(10)
(Sλ − λM4)

−1F (λ) := (TH
2 +K22 − λM4)

−1F (λ)

− (Sλ − λM4)
−1Rλ(T

H
2 +K22 − λM4)

−1F (λ).

The use of Lemma 4.2 and Proposition 2 in [9] implies that

(Sλ − λM4)
−1Rλ(T

H
2 +K22 − λM4)

−1F (λ)
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is a Fredholm perturbation on X . Now, the fact that Fb(X) is a closed two-
sided ideal of L(X) allows us to deduce from Eq. (10) that (Sλ −λM4)

−1F (λ)
is also a Fredholm perturbation.

Since the operator H is a Fredholm perturbation on X , then ΓY has also
this property. This together with Lemma 4.2-(ii), Proposition 2 in [9] and Eq.
(9), make us conclude that

(11)
G(λ)(Sλ − λM4)

−1 := G(λ)(TH
2 +K22 − λM4)

−1

−G(λ)(TH
2 +K22 − λM4)

−1Rλ(Sλ − λM4)
−1

is a Fredholm perturbation on X , for λ ∈ ρM1
(T1)∩ρM4

(TH
2 +K22)∩ρM4

(Sλ).
In what follows, it easy to show from Eqs. (10) and (11) with Proposition 2
in [9], that the operators G(λ)(Sλ − λM4)

−1F (λ) and (Sλ − λM4)
−1 − (Sλ0

−
λM4)

−1 are Fredholm perturbations on X .
For all claims cited above and from Theorem 2.1, we get

(L− λM)−1 − (Lλ0
− λM)−1 ∈ Fb(X ×X).

Therefore, by combining Remark 4.2, Theorems 2.2 in [12] and 2.3, we have

σek,M (L) = σek,M (Lλ0
) = σek,M1

(T1) ∪ σek,M4
(Sλ), 4 ≤ k ≤ 6, r, l.

If we combine the information about σei,M1
(T1) and σei,M4

(Sλ), for i = 1, . . . , 6
(see Section 4 in [25] for more details) with Eq. (2), we obtain the following
result for the Mj-essential right and left spectra for j = 1, 4 of the operators
T1 and Sλ as:

σer,M1
(T1) = σel,M1

(T1) = σek,M1
(T1) = {λ ∈ C : Reλ ≤ −

λ∗1
µ∗
1

, }, 4 ≤ k ≤ 6.

σer,M4
(Sλ) = σel,M4

(Sλ) = σek,M4
(Sλ) = {λ ∈ C : Reλ ≤ −

λ∗2
µ∗
4

}, 4 ≤ k ≤ 6

which ends this proof. �

Conclusion: In this paper, we provide some general results on right and left
Fredholm perturbations. More specific perturbations results are stated until the
paper where they are used to describe the Fredholm, right and left Fredholm
perturbations of the difference between the resolvents of two block operator
matrices which ensure the stability on their M -essential spectra under weaker
conditions than proved in the papers of [4, 14, 25]. All the results are new and
are not yet investigate considerably.
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Ukräın. Math. Zh. 50 (1998), no. 8, 1064–1072.
[17] K. Latrach and A. Dehici, Relatively strictly singular perturbations, essential spectra

and application, J. Math. Anal. Appl. 252 (2000), no. 2, 767–789.
[18] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Amer.

Math. Soc., Providence, 1988.
[19] M. Mokhtar-Kharroubi, Time asymptotic behaviour and compactness in neutron trans-

port theory, Euro. Jour. Mech. B Fluid 11 (1992), 39–68.
[20] V. Muller, Spectral theory of linear operator and spectral system in Banach algebras,

Operator Theory: Advances and Applications, 139. Birkhäuser Verlag, Basel, 2003.
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