DOI QR코드

DOI QR Code

In Vitro and in Vivo Effects of Nitrofurantoin on Experimental Toxoplasmosis

  • Yeo, Seon-Ju (Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University) ;
  • Jin, ChunMei (Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Affiliated Ministry of Education, Yanbian University College of Pharmacy) ;
  • Kim, SungYeon (College of Pharmacy, Wonkwang University) ;
  • Park, Hyun (Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University)
  • Received : 2016.01.27
  • Accepted : 2016.03.13
  • Published : 2016.04.30

Abstract

Toxoplasma gondii is an important opportunistic pathogen that causes toxoplasmosis, which has very few therapeutic treatment options. The most effective therapy is a combination of pyrimethamine and sulfadiazine; however, their utility is limited because of drug toxicity and serious side effects. For these reasons, new drugs with lower toxicity are urgently needed. In this study, the compound, (Z)-1-[(5-nitrofuran-2-yl)methyleneamino]-imidazolidine-2,4-dione (nitrofurantoin), showed anti-T. gondii effects in vitro and in vivo. In HeLa cells, the selectivity of nitrofurantoin was 2.3, which was greater than that of pyrimethamine (0.9). In T. gondii-infected female ICR mice, the inhibition rate of T. gondii growth in the peritoneal cavity was 44.7% compared to the negative control group after 4-day treatment with 100 mg/kg of nitrofurantoin. In addition, hematology indicators showed that T. gondii infection-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, biochemical parameters involved in liver injury, were reduced by nitrofurantoin significantly. Moreover, nitrofurantoin exerted significant effects on the index of antioxidant status, i.e., malondialdehyde (MDA) and glutathione (GSH). The nitrofurantoin-treated group inhibited the T. gondii-induced MDA levels while alleviating the decrease in GSH levels. Thus, nitrofurantoin is a potential anti-T. gondii candidate for clinical application.

Keywords

References

  1. Tenter AM. Toxoplasma gondii in animals used for human consumption. Mem Inst Oswaldo Cruz 2009; 104: 364-369. https://doi.org/10.1590/S0074-02762009000200033
  2. Sabin AB, Feldman HA. Chorioretinopathy associated with other evidence of cerebral damage in childhood; a syndrome of unknown etiology separable from congenital toxoplasmosis. J Pediatr 1949; 35: 296-309. https://doi.org/10.1016/S0022-3476(49)80002-3
  3. Dubey JP, Zarnke R, Thomas NJ, Wong SK, Van Bonn W, Briggs M, Davis JW, Ewing R, Mense M, Kwok OC, Romand S, Thulliez P. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet Parasitol 2003; 116: 275-296. https://doi.org/10.1016/S0304-4017(03)00263-2
  4. Sabin AB, Warren J. Therapeutic effectiveness of certain sulfonamide on infection by an intracellular protozoon (Toxoplasma). Proc Soc Exp Biol Med 1942; 51: 19-23. https://doi.org/10.3181/00379727-51-13809
  5. Eyles DE, Coleman N. The effect of metabolites on the antitoxoplasmic action of pyrimethamine and sulfadiazine. Am J Trop Med Hyg 1960; 9: 277-283. https://doi.org/10.4269/ajtmh.1960.9.277
  6. Garin JP, Eyles DE. Le traitement de la toxoplasmose experimentale de la souris par la spiramycine. Presse Medicale 1958; 66: 957-958.
  7. Desmonts G, Couvreur J. Toxoplasmosis in pregnancy and its transmission to the fetus. Bull N Y Acad Med 1974; 50: 146-159.
  8. Dubey JP, Velmurugan GV, Ulrich V, Gill J, Carstensen M, Sundar N, Kwok OC, Thulliez P, Majumdar D, Su C. Transplacental toxoplasmosis in naturally-infected white-tailed deer: isolation and genetic characterisation of Toxoplasma gondii from foetuses of different gestational ages. Int J Parasitol 2008; 38: 1057-1063. https://doi.org/10.1016/j.ijpara.2007.11.010
  9. Araujo FG, Remington JS. Effect of clindamycin on acute and chronic toxoplasmosis in mice. Antimicrob Agents Chemother 1974; 5: 647-651. https://doi.org/10.1128/AAC.5.6.647
  10. Dannemann B, McCutchan JA, Israelski D, Antoniskis D, Leport C, Luft B, Nussbaum J, Clumeck N, Morlat P, Chiu J, Vilde JL, Orellana M, Feigal D, Bartok A, Heseltine P, Leedom J, Remington J. Treatment of toxoplasmic encephalitis in patients with AIDS. A randomized trial comparing pyrimethamine plus clindamycin to pyrimethamine plus sulfadiazine. Ann Intern Med 1992; 116: 33-43. https://doi.org/10.7326/0003-4819-116-1-33
  11. Georgiev VS. Management of toxoplasmosis. Drugs 1994; 48: 179-188. https://doi.org/10.2165/00003495-199448020-00005
  12. Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clin Infect Dis 1992; 15: 211-222. https://doi.org/10.1093/clinids/15.2.211
  13. Jin C, Kaewintajuk K, Jiang J, Jeong W, Kamata M, Kim HS, Wataya Y, Park H. Toxoplasma gondii: a simple high-throughput assay for drug screening in vitro. Exp Parasitol 2009; 121: 132-136. https://doi.org/10.1016/j.exppara.2008.10.006
  14. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  15. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 1980; 106: 207-212. https://doi.org/10.1016/0003-2697(80)90139-6
  16. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957; 28: 56-63. https://doi.org/10.1093/ajcp/28.1.56
  17. Jiang JH, Jin CM, Kim YC, Kim HS, Park WC, Park H. Anti-toxoplasmosis effects of oleuropein isolated from Fraxinus rhychophylla. Biol Pharm Bull 2008; 31: 2273-2276. https://doi.org/10.1248/bpb.31.2273
  18. Wessels FL, Schwan TJ, Pong SF. Synthesis and antidepressant activity of 5-(4-dimethylaminobenzyl)imidazolidine-2,4-dione. J Pharm Sci 1980; 69: 1102-1104. https://doi.org/10.1002/jps.2600690933
  19. Zejc A, Kiec-Kononowicz K, Chlon G, Kleinrok Z, Kolasa K, Pietrasiewicz T, Czechowska G. Synthesis and pharmacological properties of diphenylimidazolidine acetic and propionic acids derivatives. Pol J Pharmacol Pharm 1989; 41: 483-493. https://doi.org/10.1111/j.2042-7158.1989.tb06505.x
  20. Kiec-Kononowicz K, Byrtus H, Zejc A, Filipek B, Chevallet P. Synthesis and antiarrhythmic properties of basic amide derivatives of imidazolidine-2,4-dione and pyrrolidine-2,5-dione II. Farmaco 1995; 50: 355-360.
  21. Niwata S, Fukami H, Sumida M, Ito A, Kakutani S, Saitoh M, Suzuki K, Imoto M, Shibata H, Imajo S, Kiso Y, Tanaka T, Nakazato H, Ishihara T, Takai S, Yamamoto D, Shiota N, Miyazaki M, Okunishi H, Kinoshita A, Urata H, Arakawa K. Substituted 3-(phenylsulfonyl)-1-phenylimidazolidine-2,4-dione derivatives as novel nonpeptide inhibitors of human heart chymase. J Med Chem 1997; 40: 2156-2163. https://doi.org/10.1021/jm960793t
  22. Muccioli GG, Fazio N, Scriba GK, Poppitz W, Cannata F, Poupaert JH, Wouters J, Lambert DM. Substituted 2-thioxoimidazolidin-4-ones and imidazolidine-2,4-diones as fatty acid amide hydrolase inhibitors templates. J Med Chem 2006; 49: 417-425. https://doi.org/10.1021/jm050977k
  23. Mukherjee A, Dutta S, Chashoo G, Bhagat M, Saxena AK, Sanyal U. Evaluation of fluoren-NU as a novel antitumor agent. Oncol Res 2009; 17: 387-396. https://doi.org/10.3727/096504009788912516
  24. Reddy YT, Sekhar KR, Sasi N, Reddy PN, Freeman ML, Crooks PA. Novel substituted (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-diones and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones as potent radio-sensitizing agents. Bioorg Med Chem Lett 2010; 20: 600-602. https://doi.org/10.1016/j.bmcl.2009.11.082
  25. Derouin F, Piketty C, Chastang C, Chau F, Rouveix B, Pocidalo JJ. Anti-Toxoplasma effects of dapsone alone and combined with pyrimethamine. Antimicrob Agents Chemother 1991; 35: 252-255. https://doi.org/10.1128/AAC.35.2.252
  26. Piketty C, Derouin F, Rouveix B, Pocidalo JJ. In vivo assessment of antimicrobial agents against Toxoplasma gondii by quantification of parasites in the blood, lungs, and brain of infected mice. Antimicrob Agents Chemother 1990; 34: 1467-1472. https://doi.org/10.1128/AAC.34.8.1467
  27. Roca B, Calabuig C, Arenas M. Toxoplasmosis and hepatitis. Med Clin (Barc) 1992; 99: 595-596 (in Spanish).
  28. Yarim GF, Nisbet C, Oncel T, Cenesiz S, Ciftci G. Serum protein alterations in dogs naturally infected with Toxoplasma gondii. Parasitol Res 2007; 101: 1197-1202. https://doi.org/10.1007/s00436-007-0601-0
  29. Karaman U, Celik T, Kiran TR, Colak C, Daldal NU. Malondialdehyde, glutathione, and nitric oxide levels in Toxoplasma gondii seropositive patients. Korean J Parasitol 2008; 46: 293-295. https://doi.org/10.3347/kjp.2008.46.4.293
  30. Choi HJ, Yu ST, Lee KI, Choi JK, Chang BY, Kim SY, Ko MH, Song HO, Park H. 6-trifluoromethyl-2-thiouracil possesses anti-Toxoplasma gondii effect in vitro and in vivo with low hepatotoxicity. Exp Parasitol 2014; 143: 24-29. https://doi.org/10.1016/j.exppara.2014.05.002

Cited by

  1. Lectins from Synadenium carinatum (ScLL) and Artocarpus heterophyllus (ArtinM) Are Able to Induce Beneficial Immunomodulatory Effects in a Murine Model for Treatment of Toxoplasma gondii Infecti vol.6, pp.None, 2016, https://doi.org/10.3389/fcimb.2016.00164
  2. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006–2016) vol.8, pp.None, 2016, https://doi.org/10.3389/fmicb.2017.00025
  3. Safety and efficacy of the bumped kinase inhibitor BKI-1553 in pregnant sheep experimentally infected with Neospora caninum tachyzoites vol.8, pp.1, 2016, https://doi.org/10.1016/j.ijpddr.2018.02.003