DOI QR코드

DOI QR Code

Current concepts in the management of rheumatoid arthritis

  • Tanaka, Yoshiya (The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health)
  • Received : 2015.04.30
  • Accepted : 2015.06.30
  • Published : 2016.03.01

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by inflammation and joint destruction that causes significant morbidity and mortality. However, the combined use of methotrexate, a synthetic disease-modifying antirheumatic drug (DMARD), and biologic DMARD has revolutionized treatment of RA. Clinical remission is now realistic targets, achieved by a large proportion of RA patients, and rapid and appropriate induction of remission by intensive treatment with biological DMARD and methotrexate is prerequisite to halt joint damage and functional disabilities. However, biological DMARD is limited to intravenous or subcutaneous uses and orally available small but strong molecules have been developed. Oral administration of tofacitinib targeting the Janus kinase (JAK) is significantly effective than placebo in active patients with $methotrexatena{\ddot{i}}ve$, inadequately responsive to methotrexate or tumor necrosis factor (TNF)-inhibitors. The efficacy was rapid and as strong as adalimumab, a TNF-inhibitor. Meanwhile, association of tofacitinib on carcinogenicity and malignancy is under debate and further investigation on post-marketing survey would be warranted. On the other hand, discontinuation of a biological DMARD without disease flare is our next goal and desirable from the standpoint of risk reduction and cost effectiveness, especially for patients with clinical remission. Recent reports indicate that more than half of early RA patients could discontinue TNF-targeted biological DMARD without clinical flare and functional impairment after obtaining clinical remission. Contrarily, for established RA, fewer patients sustained remission after the discontinuation of biological DMARD and "deep remission" at the discontinuation was a key factor to keep the treatment holiday of biological DMARD.

Keywords

References

  1. Burmester GR, Kivitz AJ, Kupper H, et al. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: the randomised CONCERTO trial. Ann Rheum Dis 2015;74:1037-1044. https://doi.org/10.1136/annrheumdis-2013-204769
  2. Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatology (Oxford) 2014;53:1560-1569. https://doi.org/10.1093/rheumatology/ket414
  3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011;365:2205-2219. https://doi.org/10.1056/NEJMra1004965
  4. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010;62:2569-2581. https://doi.org/10.1002/art.27584
  5. Smolen JS, Aletaha D, Bijlsma JW, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis 2010;69:631-637. https://doi.org/10.1136/ard.2009.123919
  6. Smolen JS, Emery P, Fleischmann R, et al. Adjustment of therapy in rheumatoid arthritis on the basis of achievement of stable low disease activity with adalimumab plus methotrexate or methotrexate alone: the randomised controlled OPTIMA trial. Lancet 2014;383:321-332. https://doi.org/10.1016/S0140-6736(13)61751-1
  7. Takeuchi T, Yamanaka H, Ishiguro N, et al. Adalimumab, a human anti-TNF monoclonal antibody, outcome study for the prevention of joint damage in Japanese patients with early rheumatoid arthritis: the HOPEFUL 1 study. Ann Rheum Dis 2014;73:536-543.
  8. Felson DT, Smolen JS, Wells G, et al. American College of Rheumatology/European League against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann Rheum Dis 2011;70:404-413. https://doi.org/10.1136/ard.2011.149765
  9. Weinblatt ME, Bathon JM, Kremer JM, et al. Safety and efficacy of etanercept beyond 10 years of therapy in North American patients with early and longstanding rheumatoid arthritis. Arthritis Care Res (Hoboken) 2011;63:373-382. https://doi.org/10.1002/art.30115
  10. D'Aura Swanson C, Paniagua RT, Lindstrom TM, Robinson WH. Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2009;5:317-324. https://doi.org/10.1038/nrrheum.2009.82
  11. Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995;377:65-68. https://doi.org/10.1038/377065a0
  12. Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. Therapeutic targeting of Janus kinases. Immunol Rev 2008;223:132-142. https://doi.org/10.1111/j.1600-065X.2008.00644.x
  13. Tanaka Y, Yamaoka K. JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical. Mod Rheumatol 2013;23:415-424. https://doi.org/10.3109/s10165-012-0799-2
  14. O'Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013;72 Suppl 2:ii111-ii115. https://doi.org/10.1136/annrheumdis-2012-202576
  15. Changelian PS, Flanagan ME, Ball DJ, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 2003;302:875-878. https://doi.org/10.1126/science.1087061
  16. Flanagan ME, Blumenkopf TA, Brissette WH, et al. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem 2010;53:8468-8484. https://doi.org/10.1021/jm1004286
  17. Tanaka Y, Suzuki M, Nakamura H, Toyoizumi S, Zwillich SH; Tofacitinib Study Investigators. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken) 2011;63:1150-1158.
  18. Fleischmann R, Cutolo M, Genovese MC, et al. Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum 2012;64:617-629. https://doi.org/10.1002/art.33383
  19. Fleischmann R, Kremer J, Cush J, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 2012;367:495-507. https://doi.org/10.1056/NEJMoa1109071
  20. Kremer J, Li ZG, Hall S, et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med 2013;159:253-261. https://doi.org/10.7326/0003-4819-159-4-201308200-00006
  21. Lee EB, Fleischmann R, Hall S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 2014;370:2377-2386. https://doi.org/10.1056/NEJMoa1310476
  22. van Vollenhoven RF, Fleischmann R, Cohen S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 2012;367:508-519. https://doi.org/10.1056/NEJMoa1112072
  23. van der Heijde D, Tanaka Y, Fleischmann R, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum 2013;65:559-570. https://doi.org/10.1002/art.37816
  24. Sonomoto K, Yamaoka K, Kubo S, et al. Effects of tofacitinib on lymphocytes in rheumatoid arthritis: relation to efficacy and infectious adverse events. Rheumatology (Oxford) 2014;53:914-918. https://doi.org/10.1093/rheumatology/ket466
  25. Ghoreschi K, Jesson MI, Li X, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 2011;186:4234-4243. https://doi.org/10.4049/jimmunol.1003668
  26. Ghoreschi K, Laurence A, O'Shea JJ. Janus kinases in immune cell signaling. Immunol Rev 2009;228:273-287. https://doi.org/10.1111/j.1600-065X.2008.00754.x
  27. Maeshima K, Yamaoka K, Kubo S, et al. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-gamma and interleukin-17 production by human CD4+ T cells. Arthritis Rheum 2012;64:1790-1798. https://doi.org/10.1002/art.34329
  28. Wang SP, Iwata S, Nakayamada S, et al. Amplification of IL-21 signalling pathway through Bruton's tyrosine kinase in human B cell activation. Rheumatology (Oxford) 2015;54:1488-1497. https://doi.org/10.1093/rheumatology/keu532
  29. Kubo S, Yamaoka K, Kondo M, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis 2014;73:2192-2198.
  30. Tanaka Y, Hirata S, Saleem B, Emery P. Discontinuation of biologics in patients with rheumatoid arthritis. Clin Exp Rheumatol 2013;31(4 Suppl 78):S22-S27.
  31. Tanaka Y. Intensive treatment and treatment holiday of TNF-inhibitors in rheumatoid arthritis. Curr Opin Rheumatol 2012;24:319-326. https://doi.org/10.1097/BOR.0b013e3283524e4c
  32. Tanaka Y. Next stage of RA treatment: is TNF inhibitor-free remission a possible treatment goal? Ann Rheum Dis 2013;72 Suppl 2:ii124-ii127. https://doi.org/10.1136/annrheumdis-2012-202350
  33. Saleem B, Keen H, Goeb V, et al. Patients with RA in remission on TNF blockers: when and in whom can TNF blocker therapy be stopped? Ann Rheum Dis 2010;69:1636-1642. https://doi.org/10.1136/ard.2009.117341
  34. Tanaka Y, Hirata S, Kubo S, et al. Discontinuation of adalimumab after achieving remission in patients with established rheumatoid arthritis: 1-year outcome of the HONOR study. Ann Rheum Dis 2015;74:389-395. https://doi.org/10.1136/annrheumdis-2013-204016
  35. Tanaka Y, Takeuchi T, Mimori T, et al. Discontinuation of infliximab after attaining low disease activity in patients with rheumatoid arthritis: RRR (remission induction by Remicade in RA) study. Ann Rheum Dis 2010;69:1286-1291. https://doi.org/10.1136/ard.2009.121491

Cited by

  1. Understanding the diverse functions of Huatan Tongluo Fang on rheumatoid arthritis from a pharmacological perspective vol.12, pp.1, 2016, https://doi.org/10.3892/etm.2016.3329
  2. Effects of antirheumatic drug underutilization on rheumatoid arthritis disease activity vol.25, pp.4, 2016, https://doi.org/10.1007/s10787-017-0315-6
  3. Vitamin D Deficiency and Rheumatoid Arthritis vol.52, pp.3, 2016, https://doi.org/10.1007/s12016-016-8577-0
  4. Impact of Adalimumab on Work Productivity and Activity Impairment in Japanese Patients with Rheumatoid Arthritis: Large-Scale, Prospective, Single-Cohort ANOUVEAU Study vol.34, pp.3, 2016, https://doi.org/10.1007/s12325-017-0477-z
  5. Treatment of connective tissue disease-associated interstitial lung disease: the pulmonologist’s point of view vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.212
  6. Pharmacologic treatment of rheumatoid arthritis vol.60, pp.2, 2017, https://doi.org/10.5124/jkma.2017.60.2.156
  7. RhoB blockade selectively inhibits autoantibody production in autoimmune models of rheumatoid arthritis and lupus vol.10, pp.11, 2017, https://doi.org/10.1242/dmm.029835
  8. Histamine and Histamine H4 Receptor Promotes Osteoclastogenesis in Rheumatoid Arthritis vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-01101-y
  9. Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis vol.19, pp.None, 2016, https://doi.org/10.1186/s13075-017-1375-0
  10. Improved flare and remission pattern in rheumatoid arthritis over recent decades: a population-based study vol.56, pp.12, 2016, https://doi.org/10.1093/rheumatology/kex352
  11. Prediction of Transporter‐Mediated Drug‐Drug Interactions for Baricitinib vol.10, pp.6, 2016, https://doi.org/10.1111/cts.12486
  12. Cost-Effectiveness Analysis of Etanercept in Combination with Methotrexate for Rheumatoid Arthritis - Markov Model Based on Data from Serbia vol.18, pp.4, 2016, https://doi.org/10.1515/sjecr-2016-0070
  13. Characterization and Changes of Lymphocyte Subsets in Baricitinib‐Treated Patients With Rheumatoid Arthritis : An Integrated Analysis vol.70, pp.12, 2016, https://doi.org/10.1002/art.40680
  14. Nonassociation of homocysteine gene polymorphisms with treatment outcome in South Indian Tamil Rheumatoid Arthritis patients vol.18, pp.1, 2018, https://doi.org/10.1007/s10238-017-0469-y
  15. Gum Arabic Fibers Decreased Inflammatory Markers and Disease Severity Score among Rheumatoid Arthritis Patients, Phase II Trial vol.2018, pp.None, 2016, https://doi.org/10.1155/2018/4197537
  16. Fengshi Gutong Capsule Attenuates Osteoarthritis by Inhibiting MAPK, NF-κB, AP-1, and Akt Pathways vol.9, pp.None, 2016, https://doi.org/10.3389/fphar.2018.00910
  17. Integrating Network Pharmacology and Metabolomics Study on Anti-rheumatic Mechanisms and Antagonistic Effects Against Methotrexate-Induced Toxicity of Qing-Luo-Yin vol.9, pp.None, 2016, https://doi.org/10.3389/fphar.2018.01472
  18. CNTO6785, a Fully Human Antiinterleukin 17 Monoclonal Antibody, in Patients with Rheumatoid Arthritis with Inadequate Response to Methotrexate: A Randomized, Placebo-controlled, Phase II, Dose-ranging vol.45, pp.1, 2016, https://doi.org/10.3899/jrheum.161238
  19. Economic impact of adalimumab treatment in Japanese patients with rheumatoid arthritis from the adalimumab non-interventional trial for up-verified effects and utility (ANOUVEAU) study vol.28, pp.1, 2018, https://doi.org/10.1080/14397595.2017.1341459
  20. A Novel Mobile App and Population Management System to Manage Rheumatoid Arthritis Flares: Protocol for a Randomized Controlled Trial vol.7, pp.4, 2018, https://doi.org/10.2196/resprot.8771
  21. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights vol.17, pp.None, 2016, https://doi.org/10.1016/j.mtcomm.2018.09.011
  22. Tofacitinib is a modern solution to the problem of resistant rheumatoid arthritis vol.13, pp.2, 2016, https://doi.org/10.14412/1996-7012-2019-2-80-83
  23. The economic burden of depression among adults with rheumatoid arthritis in the United States vol.22, pp.4, 2016, https://doi.org/10.1080/13696998.2019.1572015
  24. A Review on Rheumatoid Arthritis Interventions and Current Developments vol.21, pp.None, 2020, https://doi.org/10.2174/1389450121999201125200558
  25. Folyl polyglutamate synthethase (FPGS) gene polymorphisms may influence methotrexate adverse events in South Indian Tamil Rheumatoid Arthritis patients vol.20, pp.2, 2016, https://doi.org/10.1038/s41397-019-0097-x
  26. Treatment strategy for patients with rheumatoid arthritis vol.63, pp.7, 2016, https://doi.org/10.5124/jkma.2020.63.7.422
  27. Bioequivalence of the pharmacokinetics between tofacitinib aspartate and tofacitinib citrate in healthy subjects vol.28, pp.3, 2020, https://doi.org/10.12793/tcp.2020.28.e13
  28. Insensitivity versus poor response to tumour necrosis factor inhibitors in rheumatoid arthritis: a retrospective cohort study vol.22, pp.1, 2020, https://doi.org/10.1186/s13075-020-2122-5
  29. Fusion proteins of biologic agents in the treatment of rheumatoid arthritis (RA) : A network meta-analysis vol.100, pp.24, 2016, https://doi.org/10.1097/md.0000000000026350
  30. Efficacy and Safety of E6011, an Anti‐Fractalkine Monoclonal Antibody, in Patients With Active Rheumatoid Arthritis With Inadequate Response to Methotrexate: Results of a Randomized, Double vol.73, pp.4, 2021, https://doi.org/10.1002/art.41555
  31. A phase 2 study of E6011, an anti-Fractalkine monoclonal antibody, in patients with rheumatoid arthritis inadequately responding to biological disease-modifying antirheumatic drugs vol.31, pp.4, 2016, https://doi.org/10.1080/14397595.2020.1868675