DOI QR코드

DOI QR Code

Emerging strategies for the treatment of pulmonary tuberculosis: promise and limitations?

  • Yew, Wing Wai (Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong) ;
  • Koh, Won-Jung (Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2015.05.06
  • Accepted : 2015.05.11
  • Published : 2016.01.01

Abstract

A worsening scenario of drug-resistant tuberculosis has increased the need for new treatment strategies to tackle this worldwide emergency. There is a pressing need to simplify and shorten the current 6-month treatment regimen for drug-susceptible tuberculosis. Rifamycins and fluoroquinolones, as well as several new drugs, are potential candidates under evaluation. At the same time, treatment outcomes of patients with drug-resistant tuberculosis should be improved through optimizing the use of f luoroquinolones, repurposed agents and newly developed drugs. In this context, the safety and tolerance of new therapeutic approaches must be addressed.

Keywords

References

  1. World Health Organization. Global tuberculosis report 2014 [Internet]. Geneva: World Health Organization, c2015 [cited 2015 Nov 3]. Available from: http://www.who.int/tb/publications/global_report/en/.
  2. Glaziou P, Falzon D, Floyd K, Raviglione M. Global epidemiology of tuberculosis. Semin Respir Crit Care Med 2013;34:3-16. https://doi.org/10.1055/s-0032-1333467
  3. Chang KC, Yew WW. Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: update 2012. Respirology 2013;18:8-21. https://doi.org/10.1111/j.1440-1843.2012.02257.x
  4. Falzon D, Mirzayev F, Wares F, et al. Multidrug-resistant tuberculosis around the world: what progress has been made? Eur Respir J 2015;45:150-160. https://doi.org/10.1183/09031936.00101814
  5. Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C. Totally drug-resistant tuberculosis in India. Clin Infect Dis 2012;54:579-581. https://doi.org/10.1093/cid/cir889
  6. Klopper M, Warren RM, Hayes C, et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2013;19:449-455. https://doi.org/10.3201/eid1903.120246
  7. Dheda K, Gumbo T, Gandhi NR, et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respir Med 2014;2:321-338. https://doi.org/10.1016/S2213-2600(14)70031-1
  8. Fox W, Mitchison DA. Short-course chemotherapy for tuberculosis. Lancet 1976;2:1349-1350.
  9. Mitchison D, Davies G. The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 2012;16:724-732. https://doi.org/10.5588/ijtld.12.0083
  10. Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 2012;56:2223-2230. https://doi.org/10.1128/AAC.06288-11
  11. World Health Organization. Treatment of tuberculosis: guidelines for national programmes (4th edition) [Internet]. Geneva: World Health Organization, c2015 [cited 2015 Nov 3]. Available from: http://www.who.int/tb/publications/tb_treatmentguidelines/en/.
  12. Yew WW, Cynamon M, Zhang Y. Emerging drugs for the treatment of tuberculosis. Expert Opin Emerg Drugs 2011;16:1-21. https://doi.org/10.1517/14728214.2011.521497
  13. Zumla AI, Gillespie SH, Hoelscher M, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis 2014;14:327-340. https://doi.org/10.1016/S1473-3099(13)70328-1
  14. Sirgel FA, Fourie PB, Donald PR, et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med 2005;172:128-135. https://doi.org/10.1164/rccm.200411-1557OC
  15. Mitchison DA. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 1985;66:219-225. https://doi.org/10.1016/0041-3879(85)90040-6
  16. Mitchison DA. The diagnosis and therapy of tuberculosis during the past 100 years. Am J Respir Crit Care Med 2005;171:699-706. https://doi.org/10.1164/rccm.200411-1603OE
  17. Dorman SE, Goldberg S, Stout JE, et al. Substitution of rifapentine for rifampin during intensive phase treatment of pulmonary tuberculosis: study 29 of the tuberculosis trials consortium. J Infect Dis 2012;206:1030-1040. https://doi.org/10.1093/infdis/jis461
  18. Dorman SE, Savic RM, Goldberg S, et al. Daily rifapentine for treatment of pulmonary tuberculosis: a randomized, dose-ranging trial. Am J Respir Crit Care Med 2015;191:333-343. https://doi.org/10.1164/rccm.201410-1843OC
  19. Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med 2015;191:1058-1065. https://doi.org/10.1164/rccm.201407-1264OC
  20. Satyaraddi A, Velpandian T, Sharma SK, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis 2014;18:188-195, i-iii. https://doi.org/10.5588/ijtld.13.0128
  21. Horne DJ, Royce SE, Gooze L, et al. Sputum monitoring during tuberculosis treatment for predicting outcome: systematic review and meta-analysis. Lancet Infect Dis 2010;10:387-394. https://doi.org/10.1016/S1473-3099(10)70071-2
  22. Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR. Resuscitation-promoting factors reveal an occult population of tubercle Bacilli in Sputum. Am J Respir Crit Care Med 2010;181:174-180. https://doi.org/10.1164/rccm.200905-0661OC
  23. De Groote MA, Nahid P, Jarlsberg L, et al. Elucidating novel serum biomarkers associated with pulmonary tuberculosis treatment. PLoS One 2013;8:e61002. https://doi.org/10.1371/journal.pone.0061002
  24. Garton NJ, Waddell SJ, Sherratt AL, et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 2008;5:e75. https://doi.org/10.1371/journal.pmed.0050075
  25. Nikolayevskyy V, Miotto P, Pimkina E, et al. Utility of propidium monoazide viability assay as a biomarker for a tuberculosis disease. Tuberculosis (Edinb) 2015;95:179-185. https://doi.org/10.1016/j.tube.2014.11.005
  26. Nuermberger EL, Yoshimatsu T, Tyagi S, et al. Moxif loxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med 2004;169:421-426. https://doi.org/10.1164/rccm.200310-1380OC
  27. Nuermberger EL, Yoshimatsu T, Tyagi S, et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med 2004;170:1131-1134. https://doi.org/10.1164/rccm.200407-885OC
  28. Burman WJ, Goldberg S, Johnson JL, et al. Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J Respir Crit Care Med 2006;174:331-338. https://doi.org/10.1164/rccm.200603-360OC
  29. Dorman SE, Johnson JL, Goldberg S, et al. Substitution of moxif loxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med 2009;180:273-280. https://doi.org/10.1164/rccm.200901-0078OC
  30. Wang JY, Wang JT, Tsai TH, et al. Adding moxifloxacin is associated with a shorter time to culture conversion in pulmonary tuberculosis. Int J Tuberc Lung Dis 2010;14:65-71.
  31. Conde MB, Efron A, Loredo C, et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial. Lancet 2009;373:1183-1189. https://doi.org/10.1016/S0140-6736(09)60333-0
  32. Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized clinical trial of thrice-weekly 4-month moxif loxacin or gatif loxacin containing regimens in the treatment of new sputum positive pulmonary tuberculosis patients. PLoS One 2013;8:e67030. https://doi.org/10.1371/journal.pone.0067030
  33. Gillespie SH, Crook AM, McHugh TD, et al. Fourmonth moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 2014;371:1577-1587. https://doi.org/10.1056/NEJMoa1407426
  34. Merle CS, Fielding K, Sow OB, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med 2014;371:1588-1598. https://doi.org/10.1056/NEJMoa1315817
  35. Jindani A, Harrison TS, Nunn AJ, et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med 2014;371:1599-1608. https://doi.org/10.1056/NEJMoa1314210
  36. Velayutham BV, Allaudeen IS, Sivaramakrishnan GN, et al. Sputum culture conversion with moxifloxacin-containing regimens in the treatment of patients with newly diagnosed sputum-positive pulmonary tuberculosis in South India. Clin Infect Dis 2014;59:e142-e149. https://doi.org/10.1093/cid/ciu550
  37. Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother 2008;52:2831-2835. https://doi.org/10.1128/AAC.01204-07
  38. Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med 2015;191:943-953. https://doi.org/10.1164/rccm.201410-1801OC
  39. Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis 2011;15:949-954. https://doi.org/10.5588/ijtld.10.0616
  40. Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother 2010;54:3402-3407. https://doi.org/10.1128/AAC.01354-09
  41. Diacon AH, Dawson R, du Bois J, et al. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother 2012;56:3027-3031. https://doi.org/10.1128/AAC.06125-11
  42. Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-Day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxif loxacin combinations: a randomised trial. Lancet 2012;380:986-993. https://doi.org/10.1016/S0140-6736(12)61080-0
  43. Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet 2015;385:1738-1747. https://doi.org/10.1016/S0140-6736(14)62002-X
  44. Wallis RS, Dawson R, Friedrich SO, et al. Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One 2014;9:e94462. https://doi.org/10.1371/journal.pone.0094462
  45. Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC. Novel drugs against tuberculosis: a clinician's perspective. Eur Respir J 2015;45:1119-1131. https://doi.org/10.1183/09031936.00162314
  46. Jindani A, Dore CJ, Mitchison DA. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am J Respir Crit Care Med 2003;167:1348-1354. https://doi.org/10.1164/rccm.200210-1125OC
  47. Gunther G, van Leth F, Alexandru S, et al. Multidrug-resistant tuberculosis in Europe, 2010-2011. Emerg Infect Dis 2015;21:409-416. https://doi.org/10.3201/eid2103.141343
  48. Nijland HM, Ruslami R, Suroto AJ, et al. Rifampicin reduces plasma concentrations of moxif loxacin in patients with tuberculosis. Clin Infect Dis 2007;45:1001-1007. https://doi.org/10.1086/521894
  49. Heinrich N, Dawson R, du Bois J, et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J Antimicrob Chemother 2015;70:1558-1566. https://doi.org/10.1093/jac/dku553
  50. Svensson EM, Murray S, Karlsson MO, Dooley KE. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother 2015;70:1106-1114.
  51. Yew WW. Clinically significant interactions with drugs used in the treatment of tuberculosis. Drug Saf 2002;25:111-133. https://doi.org/10.2165/00002018-200225020-00005
  52. Dooley KE, Park JG, Swindells S, et al. Safety, tolerability, and pharmacokinetic interactions of the antituberculous agent TMC207 (bedaquiline) with efavirenz in healthy volunteers: AIDS Clinical Trials Group Study A5267. J Acquir Immune Defic Syndr 2012;59:455-462. https://doi.org/10.1097/QAI.0b013e3182410503
  53. Svensson EM, Aweeka F, Park JG, Marzan F, Dooley KE, Karlsson MO. Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother 2013;57:2780-2787. https://doi.org/10.1128/AAC.00191-13
  54. Svensson EM, Dooley KE, Karlsson MO. Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother 2014;58:6406-6412. https://doi.org/10.1128/AAC.03246-14
  55. Dooley KE, Kim PS, Williams SD, Hafner R. TB and HIV therapeutics: pharmacology research priorities. AIDS Res Treat 2012;2012:874083.
  56. Dooley KE, Luetkemeyer AF, Park JG, et al. Phase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampin. Antimicrob Agents Chemother 2014;58:5245-5252. https://doi.org/10.1128/AAC.03332-14
  57. Shimokawa Y, Sasahara K, Yoda N, Mizuno K, Umehara K. Delamanid does not inhibit or induce cytochrome p450 enzymes in vitro. Biol Pharm Bull 2014;37:1727-1735. https://doi.org/10.1248/bpb.b14-00311
  58. Jia L, Noker PE, Coward L, Gorman GS, Protopopova M, Tomaszewski JE. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br J Pharmacol 2006;147:476-485. https://doi.org/10.1038/sj.bjp.0706650
  59. Reddy VM, Einck L, Andries K, Nacy CA. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob Agents Chemother 2010;54:2840-2846. https://doi.org/10.1128/AAC.01601-09
  60. Ahuja SD, Ashkin D, Avendano M, et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med 2012;9:e1001300. https://doi.org/10.1371/journal.pmed.1001300
  61. Mdluli K, Kaneko T, Upton A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 2015;5:a021154. https://doi.org/10.1101/cshperspect.a021154
  62. Falzon D, Jaramillo E, Schunemann HJ, et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur Respir J 2011;38:516-528. https://doi.org/10.1183/09031936.00073611
  63. Van Deun A, Maug AK, Salim MA, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 2010;182:684-692. https://doi.org/10.1164/rccm.201001-0077OC
  64. Grosset JH, Tyagi S, Almeida DV, et al. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 2013;188:608-612. https://doi.org/10.1164/rccm.201304-0753OC
  65. Padayatchi N, Gopal M, Naidoo R, et al. Clofazimine in the treatment of extensively drug-resistant tuberculosis with HIV coinfection in South Africa: a retrospective cohort study. J Antimicrob Chemother 2014;69:3103-3107. https://doi.org/10.1093/jac/dku235
  66. Tang S, Yao L, Hao X, et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis 2015;60:1361-1367.
  67. Aung KJ, Van Deun A, Declercq E, et al. Successful '9-month Bangladesh regimen' for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis 2014;18:1180-1187. https://doi.org/10.5588/ijtld.14.0100
  68. Yew WW, Lange C. Fluoroquinolone resistance in Mycobacterium tuberculosis: what have we learnt? Int J Tuberc Lung Dis 2014;18:1-2. https://doi.org/10.5588/ijtld.13.0739
  69. Nunn AJ, Rusen ID, Van Deun A, et al. Evaluation of a standardized treatment regimen of anti-tuberculosis drugs for patients with multi-drug-resistant tuberculosis (STREAM): study protocol for a randomized controlled trial. Trials 2014;15:353. https://doi.org/10.1186/1745-6215-15-353
  70. Dooley KE, Obuku EA, Durakovic N, et al. World Health Organization group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential? J Infect Dis 2013;207:1352-1358. https://doi.org/10.1093/infdis/jis460
  71. Cox H, Ford N. Linezolid for the treatment of complicated drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis 2012;16:447-454. https://doi.org/10.5588/ijtld.11.0451
  72. Sotgiu G, Centis R, D'Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J 2012;40:1430-1442. https://doi.org/10.1183/09031936.00022912
  73. Koh WJ, Kang YR, Jeon K, et al. Daily 300 mg dose of linezolid for multidrug-resistant and extensively drug-resistant tuberculosis: updated analysis of 51 patients. J Antimicrob Chemother 2012;67:1503-1507. https://doi.org/10.1093/jac/dks078
  74. Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 2012;367:1508-1518. https://doi.org/10.1056/NEJMoa1201964
  75. Chang KC, Yew WW, Cheung SW, et al. Can intermittent dosing optimize prolonged linezolid treatment of difficult multidrug-resistant tuberculosis? Antimicrob Agents Chemother 2013;57:3445-3449. https://doi.org/10.1128/AAC.00388-13
  76. Chang KC, Yew WW, Tam CM, Leung CC. WHO group 5 drugs and difficult multidrug-resistant tuberculosis: a systematic review with cohort analysis and meta-analysis. Antimicrob Agents Chemother 2013;57:4097-4104. https://doi.org/10.1128/AAC.00120-13
  77. Dey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 2013;68:284-293. https://doi.org/10.1093/jac/dks389
  78. Gopal M, Padayatchi N, Metcalfe JZ, O'Donnell MR. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis 2013;17:1001-1007. https://doi.org/10.5588/ijtld.12.0144
  79. Payen MC, De Wit S, Martin C, et al. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis 2012;16:558-560. https://doi.org/10.5588/ijtld.11.0414
  80. De Lorenzo S, Alffenaar JW, Sotgiu G, et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J 2013;41:1386-1392. https://doi.org/10.1183/09031936.00124312
  81. Diacon AH, Pym A, Grobusch M, et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 2009;360:2397-2405. https://doi.org/10.1056/NEJMoa0808427
  82. Diacon AH, Donald PR, Pym A, et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother 2012;56:3271-3276. https://doi.org/10.1128/AAC.06126-11
  83. Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 2014;371:723-732. https://doi.org/10.1056/NEJMoa1313865
  84. Guglielmetti L, Le Du D, Jachym M, et al. Compassionate use of bedaquiline for the treatment of multidrug- resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin Infect Dis 2015;60:188-194. https://doi.org/10.1093/cid/ciu786
  85. Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 2012;366:2151-2160. https://doi.org/10.1056/NEJMoa1112433
  86. Skripconoka V, Danilovits M, Pehme L, et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J 2013;41:1393-1400. https://doi.org/10.1183/09031936.00125812
  87. Wells CD, Gupta R, Hittel N, Geiter LJ. Long-term mortality assessment of multidrug-resistant tuberculosis patients treated with delamanid. Eur Respir J 2015;45:1498-1501. https://doi.org/10.1183/09031936.00176314
  88. Isaakidis P, Varghese B, Mansoor H, et al. Adverse events among HIV/MDR-TB co-infected patients receiving antiretroviral and second line anti-TB treatment in Mumbai, India. PLoS One 2012;7:e40781. https://doi.org/10.1371/journal.pone.0040781
  89. Daskapan A, de Lange WC, Akkerman OW, et al. The role of therapeutic drug monitoring in individualised drug dosage and exposure measurement in tuberculosis and HIV co-infection. Eur Respir J 2015;45:569-571. https://doi.org/10.1183/09031936.00142614
  90. Sotgiu G, Alffenaar JW, Centis R, et al. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis 2015;32:101-104. https://doi.org/10.1016/j.ijid.2014.12.001
  91. Horsburgh CR Jr, Haxaire-Theeuwes M, Lienhardt C, et al. Compassionate use of and expanded access to new drugs for drug-resistant tuberculosis. Int J Tuberc Lung Dis 2013;17:146-152. https://doi.org/10.5588/ijtld.12.0017
  92. Huang TS, Liu YC, Sy CL, Chen YS, Tu HZ, Chen BC. In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis complex isolated in Taiwan over 10 years. Antimicrob Agents Chemother 2008;52:2226-2227. https://doi.org/10.1128/AAC.00414-07
  93. Zhang Z, Pang Y, Wang Y, Liu C, Zhao Y. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrug-resistant and extensively drug-resistant tuberculosis in China. Int J Antimicrob Agents 2014;43:231-235. https://doi.org/10.1016/j.ijantimicag.2013.12.007
  94. Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014;58:2979-2981. https://doi.org/10.1128/AAC.00037-14
  95. Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 2014;9:e102135. https://doi.org/10.1371/journal.pone.0102135
  96. Somoskovi A, Bruderer V, Homke R, Bloemberg GV, Bottger EC. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur Respir J 2015;45:554-557. https://doi.org/10.1183/09031936.00142914
  97. Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014;58:574-576. https://doi.org/10.1128/AAC.01462-13
  98. Gupta S, Tyagi S, Bishai WR. Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother 2015;59:673-676. https://doi.org/10.1128/AAC.04019-14
  99. Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother 2013;57:2613-2619. https://doi.org/10.1128/AAC.02346-12
  100. Park JH, Jin HE, Kim DD, Chung SJ, Shim WS, Shim CK. Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation. Int J Pharm 2013;441(1-2):562-569. https://doi.org/10.1016/j.ijpharm.2012.10.044
  101. Verma RK, Germishuizen WA, Motheo MP, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother 2013;57:1050-1052. https://doi.org/10.1128/AAC.01897-12
  102. Sung JC, Garcia-Contreras L, Verberkmoes JL, et al. Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation. Antimicrob Agents Chemother 2009;53:1338-1343. https://doi.org/10.1128/AAC.01389-08

Cited by

  1. Clinical significance of smear positivity for acid-fast bacilli after ≥5 months of treatment in patients with drug-susceptible pulmonary tuberculosis vol.95, pp.31, 2016, https://doi.org/10.1097/md.0000000000004540
  2. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations vol.37, pp.2, 2017, https://doi.org/10.3343/alm.2017.37.2.97