고메티오닌혈증의 신생아 선별 검사 후 진단 알고리즘

A Diagnostic Algorithm after Newborn Screening for Hypermethioninemia

  • 김유미 (부산대학교 어린이병원 소아청소년과)
  • Kim, Yoo-Mi (Department of Pediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital)
  • 발행 : 2016.04.25

초록

국내 정부 지원 무료 검사로 진행 중인 6종 신생아 선별 검사에서 호모시스틴뇨증을 진단하기 위해 메티오닌의 증가가 마커로 사용되고 있다. 그러나 실제 고메티오닌혈증에서 감별해야 하는 질환들에는 간질환, tyrosinemia type I (MIM #276700), methionine adenosyltransferase (MAT) I/III 결핍, glycine N-methyltransferase (GNMT) 결핍, adenosylhomocy-steine hydrolase (SAHH) 결핍, adenosine kinase (ADK) 결핍, citrin deficiency (citrullinemia type I) 등이 있다. 고메티오닌혈증의 흔한 원인이자 양성 질환으로 알려졌던 MAT I/III 결핍 질환은 유전 방식에 따라 신경학적 증상 발현 및 치료의 필요성이 보고되고 있어 신생아 선별검사에서 고메티오닌혈증 양성으로 나올 경우 감별 진단 및 처치에 대한 가이드라인이 필요하겠다. 신생아 선별검사에서 고메티오닌혈증 양성으로 나올 경우, 간수치 및 혈장 아미노산 분석, 혈장 총 호모시스테인 수치를 통해 여러 질환 들을 감별할 수 있으며 혈장 총 호모시스테인의 증가가 40 umol/L 미만의 경우에서는 MAT I/III 결핍을 먼저 고려해 볼 수 있겠다. MAT I/III 결핍에서는 우성 유전형일 경우에는 치료가 필요 없지만 열성 유전형에서는 정기적인 발달 지표, 혈장 메티오닌과 총 호모시스테인 수치의 추적이 필요하겠으며 심한 고메티오인혈증(>800umol/L)에서는 저메티오닌식이를, 발달 지연, 뇌말이집 형성 장애가 동반한 경우에는 S-adenosylmethio-nine (SAM) 복용을 고려한다. 호모시스틴뇨증에서는 절반에서 피리독신 반응형을 보이고 피리독신 반응형은 조기에 메티오닌 증가가 없을 수 있기에 선별검사에서 놓칠 수 있다. 치료에는 저메티오닌 식이, 피리독신, 베타인, 엽산 등이 있으며 베타인 투약시 메티오닌 증가로 인한 뇌부종에 대한 주의가 필요하다. 그 외 GNMT, SAHH, ADK 결핍은 현재 환자 수와 예후가 제한적으로 조기 진단 및 치료에 대한 뚜렷한 이득이 명확하지 않은 상태이다. 미국, 유럽의 일부 기관들에서는 낮은 메티오닌 수치로 재메칠화 장애에 대한 선별검사도 시행하고 있어 국내에도 관련 질환에 대한 현황 및 선별검사 도입의 필요성에 대해 논의가 필요하겠다.

Newborn screening (NBS) is important if early intervention is effective in a disorder and if there are sensitive and specific biochemical markers to detect disorder. Methionine is a useful marker to detect abnormal methionine-homocysteine metabolism, especially homocystinuria which needs urgent medical intervention. However, hypermethioninemia could occur in other metabolic disorder including liver disease, tyrosinemia type I, methionine adenosyltransferase (MAT) I/III deficiency, glycine N-methyltransferase (GNMT) deficiency, or adenosylhomocysteine hydrolase deficiency. However, experience with NBS for homocystinurias and methylation disorders is limited. Especially, MAT I/III deficiency which is the most common cause of persistent hypermethioninemia have two inheritance, autosomal recessive (AR) and autosomal dominant (AD), and their clinical manifestation is different between AR and AD. Here, author reviewed recent articles of guideline and proposed guideline for homocystinuria and methylation disorder.

키워드

참고문헌

  1. Lee DH. Neonatal screening test. J Korean Med Assoc 1994;37:1464-80.
  2. Mudd SH. Hypermethioninemias of genetic and nongenetic origin: a review. Am J Med Genet C Semin Med Genet 2011;157C:3-32.
  3. Chien YH, Abdenur JE, Baronio F, Bannick AA, Corrales F, Couce M, et al. Mudd's disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes. Orphanet J Rare Dis 2015;10:99. https://doi.org/10.1186/s13023-015-0321-y
  4. Furujo M, Kinoshita M, Nagao M, Kubo T. Methionine adenosyltransferase I/III deficiency: neurological manifestations and relevance of S-adenosylmethionine. Mol Genet Metab 2012;107:253-6. https://doi.org/10.1016/j.ymgme.2012.08.002
  5. Chamberlin ME, Ubagai T, Mudd SH, Wilson WG, Leonard JV, Chou JY. Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest 1996;98:1021-7. https://doi.org/10.1172/JCI118862
  6. Stabler SP, Steegborn C, Wahl MC, Oliveriusova J, Kraus JP, Allen RH, et al. Elevated plasma total homocysteine in severe methionine adenosyltransferase I/III deficiency. Metabolism 51:981-8.
  7. Martins E, Marcao A, Bandeira A, Fonseca H, Nogueira C, Vilarinho L. Methionine adenosyltransferase I/III deficiency in Portugal: high frequency of a dominantly inherited form in a small area of Douro highlands. JIMD Rep 2012;6:107-12.
  8. Couce ML, Boveda MD, Garcia-Jimemez C, Balmaseda E, Vives I, Castineiras DE, et al. Hypermethioninaemia due to methionine adenosyltransferase I/III (MAT I/III) deficiency: diagnosis in an expanded neonatal screening programme. J Inherit Metab Dis 2008;Suppl 2:S233-9.
  9. Couce ML, et al. Clinical and metabolic findings in patients with methionine adenosyltransferase I/III deficiency detected by newborn screening. Mol Genet Metab 2013;110:218-21. https://doi.org/10.1016/j.ymgme.2013.08.003
  10. Nagao M, Tanaka T, Furujo M. Spectrum of mutations associated with methionine adenosyltransferase I/III deficiency among individuals identified during newborn screening in Japan. Mol Genet Metab 2013;110:460-4. https://doi.org/10.1016/j.ymgme.2013.10.013
  11. Martins E, Marcao A, Bandeira A, Fonseca H, Nogueira C, Vilarinho L. Methionine adenosyltransferase I/III deficiency in Portugal: high frequency of a dominantly inherited form in a small area of Douro highlands. JIMD Rep 2012;6:107-12.
  12. Chamberlin ME, Ubagai T, Mudd SH, Levy HL, Chou JY. Dominant inheritance of isolated hypermethioninemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. Am J Hum Genet 1997;60:540-6.
  13. Perez Mato I, Sanchez del Pino MM, Chamberlin ME, Mudd SH, Mato JM, Corrales FJ. Biochemical basis for the dominant inheritance of hypermethioninemia associated with the R264H mutation of the MAT1A gene: a monomeric methionine adenosyltransferase with tripolyphosphatase activity. J Biol Chem 2001;276:13803-9. https://doi.org/10.1074/jbc.M009017200
  14. Kim YM, Kim JH, Choi JH, Kim GH, Kim JM, Kang M, Choi IH, Cheon CK, Sohn YB, Maccarana M, Yoo HW, Lee BH. Determination of Autosomal Dominant or Recessive Methionine Adenosyltransferase I/III Deficiencies Based on Clinical and Molecular Studies. Mol Med. 2016 Feb 18. doi: 10.2119/molmed.2015.00254.
  15. Chamberlin ME, Ubagai T, Mudd SH, Thomas J, Pao VY, Nguyen TK, et al. Methionine adenosyltransferase I/III deficiency: novel mutations and clinical variations. Am J Hum Genet 2000;66:347-55. https://doi.org/10.1086/302752
  16. Chien YH, Chiang SC, Huang A, Hwu WL. Spectrum of hypermethioninemia in neonatal screening. Early Hum Dev 2005;81:529-33. https://doi.org/10.1016/j.earlhumdev.2004.11.005
  17. Hirabayashi K, Shiohara M, Yamada K, Sueki A, Ide Y, Takeuchi K, et al. Neurologically normal development of a patient with severe methionine adenosyltransferase I/III deficiency after continuing dietary methionine restriction. Gene 2013;530:104-8. https://doi.org/10.1016/j.gene.2013.08.025
  18. 박신영, 김동일, 이동환. 한국에서의 단풍당뇨증, 호모시스틴뇨증, 갈락토스혈증, 선천성 부신과형성증에 대한 신생아 선별검사의 경제성 분석. Journal of Genetic Medicine 2008;5:111-8.
  19. Yap S. Classical homocystinuria: vascular risk and its prevention. J Inherit Metab Dis 2003;26(2-3):259-65. https://doi.org/10.1023/A:1024497419821
  20. Mulvihill A, Yap S, O'Keefe M, Howard PM, Naughten ER. Ocular findings among patients with latediagnosed or poorly controlled homocystinuria compared with a screened, well-controlled population. J AAPOS 2001;5:311-5. https://doi.org/10.1067/mpa.2001.118219
  21. Yap S, Rushe H, Howard PM, Naughten ER. The intellectual abilities of early-treated individuals with pyridoxine-nonresponsive homocystinuria due to cystathionine beta-synthase deficiency. J Inherit Metab Dis 2001;24:437-47. https://doi.org/10.1023/A:1010525528842
  22. Baric I. Inherited disorders in the conversion of methionine to homocysteine. J Inherit Metab Dis 2009;32:459-71. https://doi.org/10.1007/s10545-009-1146-4
  23. Honzik T, Magner M, Krijt J, Sokolova J, Vugrek O, Beluzic R, et al. Clinical picture of S-adenosylhomocysteine hydrolase deficiency resembles phosphomannomutase 2 deficiency. Mol Genet Metab 2012;107:611-3. https://doi.org/10.1016/j.ymgme.2012.08.014
  24. Baric I, Cuk M, Fumic K, Vugrek O, Allen RH, Glenn B, et al. S-Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J Inherit Metab Dis 2005;28:885-902. https://doi.org/10.1007/s10545-005-0192-9
  25. Grubbs R, Vugrek O, Deisch J, Wagner C, Stabler S, Allen R, et al. S-adenosylhomocysteine hydrolase deficiency: two siblings with fetal hydrops and fatal outcomes. J Inherit Metab Dis 2010;33:705-13. https://doi.org/10.1007/s10545-010-9171-x
  26. Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, et al. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet 2011;89:507-15. https://doi.org/10.1016/j.ajhg.2011.09.004
  27. Adam S, Almeida MF, Carbasius Weber E, Champion H, Chan H, Daly A, et al. Dietary practices in pyridoxine non-responsive homocystinuria: a European survey. Mol Genet Metab 2013;110:454-9. https://doi.org/10.1016/j.ymgme.2013.10.003
  28. Devlin AM, Hajipour L, Gholkar A, Fernandes H, Ramesh V, Morris AA. Cerebral edema associated with betaine treatment in classical homocystinuria. J Pediatr 2004;144:545-8. https://doi.org/10.1016/j.jpeds.2003.12.041
  29. Yaghmai R, Kashani AH, Geraghty MT, Okoh J, Pomper M, Tangerman A, et al. Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine betasynthase (CBS) deficiency. Am J Med Genet 2002;108:57-63. https://doi.org/10.1002/ajmg.10186
  30. Huemer M, Kozich V, Rinaldo P, Baumgartner MR, Merinero B, Pasquini E, Ribes A, Blom HJ. Newborn screening for homocystinurias and methylation disorders: systematic review and proposed guidelines. J Inherit Metab Dis 2015;38(6):1007-19. https://doi.org/10.1007/s10545-015-9830-z
  31. Martinelli D, Deodato F, Dionisi-Vici C. Cobalamin C defect: natural history, pathophysiology, and treatment. J Inherit Metab Dis 2011;34:127-35. https://doi.org/10.1007/s10545-010-9161-z
  32. Diekman EF, de Koning TJ, Verhoeven-Duif NM, Rovers MM, van Hasselt PM. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency. JAMA Neurol 2014;71:188-94. https://doi.org/10.1001/jamaneurol.2013.4915