DOI QR코드

DOI QR Code

Development and Applications of Multi-layered Harmony Search Algorithm for Improving Optimization Efficiency

최적화 기법 효율성 개선을 위한 Multi-layered Harmony Search Algorithm의 개발 및 적용

  • Lee, Ho Min (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Yoo, Do Guen (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Lee, Eui Hoon (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Choi, Young Hwan (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Kim, Joong Hoon (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 이호민 (고려대학교 건축사회환경공학부) ;
  • 유도근 (고려대학교 방재과학기술연구소) ;
  • 이의훈 (고려대학교 건축사회환경공학부) ;
  • 최영환 (고려대학교 건축사회환경공학부) ;
  • 김중훈 (고려대학교 건축사회환경공학부)
  • Received : 2016.01.05
  • Accepted : 2016.04.07
  • Published : 2016.04.30

Abstract

The Harmony Search Algorithm (HSA) is one of the recently developed metaheuristic optimization algorithms. Since the development of HSA, it has been applied by many researchers from various fields. The increasing complexity of problems has created enormous challenges for the current technique, and improved techniques of optimization algorithms are required. In this study, to improve the HSA in terms of a structural setting, a new HSA that has structural characteristics, called the Multi-layered Harmony Search Algorithm (MLHSA) was proposed. In this new method, the structural characteristics were added to HSA to improve the exploration and exploitation capability. In addition, the MLHSA was applied to optimization problems, including unconstrained benchmark functions and water distribution system pipe diameter design problems to verify the efficiency and applicability of the proposed algorithm. The results revealed the strength of MLHSA and its competitiveness.

최적화 분야에서 Harmony Search Algorithm (HSA)은 근래에 개발된 메타휴리스틱 최적화 알고리즘의 하나로, HSA가 개발된 이래 공학, 자연과학, 의약학 등 다양한 분야에서 많은 연구자들에 의해 활용되어왔다. 현재 최적화 대상 문제들의 복잡성이 날로 증가하고 있으며 이에 따라 기존 최적화 기법에 대한 효율을 개선하는 방법론 개발에 대한 필요성이 대두되고 있다. 따라서 본 연구에서는 HSA의 구조적 특성에 초점을 맞추어 해탐색 능력을 향상시키는 것을 목표로 하여 새로운 메타휴리스틱 최적화 알고리즘인 Multi-layered Harmony Search Algorithm (MLHSA)을 제안하였다. 개발된 MLHSA는 기존 HSA에 추가적으로 구조적인 특성을 부여하여 전역 탐색 및 지역 탐색 성능을 개선하였다. 또한, 제안된 기법의 효율성과 적용성을 검증하기 위해 이전 최적화 알고리즘 관련 문헌에서 다양한 알고리즘이 적용된 바 있는 수학적 최적해 탐색 문제와 상수도 관망의 최적 관경 설계에 MLHSA를 통한 최적화를 수행하였다. 적용 결과 본 연구에서 개발된 MLHSA는 기존 알고리즘을 효과적으로 대체할 수 있는 최적화 기법임을 확인할 수 있었다.

Keywords

References

  1. Holland J. H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, 1975.
  2. Glover F. "Heuristics for integer programming using surrogate constraints." Decision Sciences 8.1 (1977): 156-166. DOI: http://dx.doi.org/10.1111/j.1540-5915.1977.tb01074.x
  3. Kirkpatrick S. and Vecchi M. P. "Optimization by simmulated annealing." science 220.4598 (1983): 671-680. https://doi.org/10.1126/science.220.4598.671
  4. Dorigo M. "Optimization, learning and natural algorithms." Ph. D. Thesis, Politecnico di Milano, Italy (1992).
  5. Eberhart R. C. and Kennedy J. "A new optimizer using particle swarm theory." Proceedings of the sixth international symposium on micro machine and human science. Vol. 1. 1995. DOI: http://dx.doi.org/10.1109/MHS.1995.494215
  6. Storn R. and Kenneth V. "Minimizing the Real Functions of the ICEC'96 Contest by Differential Evolution." International Conference on Evolutionary Computation. 1996. DOI: http://dx.doi.org/10.1109/ICEC.1996.542711
  7. Geem Z. W., Kim J. H. and Loganathan G. V. "A new heuristic optimization algorithm: harmony search." Simulation 76.2 (2001): 60-68. DOI: http://dx.doi.org/10.1177/003754970107600201
  8. Nakrani S. and Tovey C. "On honey bees and dynamic server allocation in internet hosting centers." Adaptive Behavior 12.3-4 (2004): 223-240. https://doi.org/10.1177/105971230401200308
  9. Yang X. S. and Deb S. "Engineering optimisation by cuckoo search." International Journal of Mathematical Modelling and Numerical Optimisation 1.4 (2010): 330-343. DOI: http://dx.doi.org/10.1504/IJMMNO.2010.035430
  10. Yang X. S. "A new metaheuristic bat-inspired algorithm." Nature inspired cooperative strategies for optimization (NICSO 2010b). Springer Berlin Heidelberg, 2010. 65-74.3.
  11. Eskandar H., Sadollah A., Bahreininejad A. and Hamdi M. "Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems." Computers & Structures 110 (2012): 151-166. DOI: http://dx.doi.org/10.1016/j.compstruc.2012.07.010
  12. Sadollah A., Bahreininejad A., Eskandar H. and Hamdi M. "Mine blast algorithm for optimization of truss structures with discrete variables." Computers & Structures 102 (2012): 49-63. DOI: http://dx.doi.org/10.1016/j.compstruc.2012.03.013
  13. Paik K. "Development of seasonal tank model and comparison of optimization algorithms for parameter calibration." Master Degree Dissertation, Department of Civil and Environmental Engineering, Korea University, Seoul, Korea (2001).
  14. Baek C. W. "Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Using ReHS" Master Degree Dissertation, Department of Civil and Environmental Engineering, Korea University, Seoul, Korea (2002).
  15. Geem Z. W.,Tseng C. and Park Y. "Harmony search for generalized orienteering problem: best touring in China." Advances in natural computation. Springer Berlin Heidelberg, (2005): 741-750.
  16. Geem Z. W. "Improved harmony search from ensemble of music players." Knowledge-Based Intelligent Information and Engineering Systems. Springer Berlin Heidelberg, (2006): 86-93. DOI: http://dx.doi.org/10.1007/11892960_11
  17. Mahdavi M., Fesanghary M., and Damangir E. "An improved harmony search algorithm for solving optimization problems." Applied mathematics and computation, 188.2 (2007): 1567-1579. DOI: http://dx.doi.org/10.1016/j.amc.2006.11.033
  18. Omran M. G. and Mahdavi M. "Global-best harmony search." Applied Mathematics and Computation 198.2 (2008): 643-656. DOI: http://dx.doi.org/10.1016/j.amc.2007.09.004
  19. Chakraborty P., Roy G. G., Das S., Jain D. and Abraham A "An Improved Harmony Search Algorithm with Differential Mutation Operator." Fundam. Inform. 95.4 (2009): 401-426.
  20. Hasancebi O., Erdal F. and Saka M. P. "Adaptive harmony search method for structural optimization." Journal of Structural Engineering 136.4 (2009): 419-431. (2009): 79-120.
  21. Wang C. M. and Huang Y. F. "Self-adaptive harmony search algorithm for optimization." Expert Systems with Applications 37.4 (2010): 2826-2837. DOI: http://dx.doi.org/10.1016/j.eswa.2009.09.008
  22. Al-Betar M. A., Khader A. T. and Liao I. Y. "A harmony search with multi-pitch adjusting rate for the university course timetabling." Recent advances in Harmony search algorithm. Springer Berlin Heidelberg, (2010): 147-161.
  23. Geem Z. W. and Sim K. B. "Parameter-setting-free harmony search algorithm." Applied Mathematics and Computation 217.8 (2010): 3881-3889. DOI: http://dx.doi.org/10.1016/j.amc.2010.09.049
  24. Fesanghary M., Mahdavi M., Minary-Jolandan M. and Alizadeh, Y. "Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems." Computer methods in applied mechanics and engineering 197.33 (2008): 3080-3091. DOI: http://dx.doi.org/10.1016/j.cma.2008.02.006
  25. Mahdavi M., Chehreghani M. H., Abolhassani H. and Forsati R. "Novel meta-heuristic algorithms for clustering web documents." Applied Mathematics and Computation 201.1 (2008): 441-451. DOI: http://dx.doi.org/10.1016/j.amc.2007.12.058
  26. Forsati R., Mahdavi M., Kangavari M. and Safarkhani B. "Web page clustering using harmony search optimization." Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on. IEEE, 2008. DOI: http://dx.doi.org/10.1109/ccece.2008.4564812
  27. Malaki M., Pourbaghery J. A. and Abolhassani H. "A Combinatiory Approach to Fuzzy Clustering with Harmony Search and its Applications to Space Shuttle data." SCIS & ISIS. Vol. 2008. No. 0. Japan Society for Fuzzy Theory and Intelligent Informatics, 2008.
  28. Jang W. S., Kang H. I. and Lee B. H. "Hybrid simplex-harmony search method for optimization problems." 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). 2008. DOI: http://dx.doi.org/10.1109/cec.2008.4631365
  29. Geem Z. W. "Particle-swarm harmony search for water network design." Engineering Optimization 41.4 (2009): 297-311. DOI: http://dx.doi.org/10.1080/03052150802449227
  30. Wang X., Gao X. Z. and Ovaska S. J. "Fusion of clonal selection algorithm and harmony search method in optimisation of fuzzy classification systems." International Journal of Bio-Inspired Computation 1.1-2 (2009): 80-88. https://doi.org/10.1504/IJBIC.2009.022776
  31. Zou D., Gao L., Wu J., Li, S. and Li Y. "A novel global harmony search algorithm for reliability problems." Computers & Industrial Engineering 58.2 (2010): 307-316. DOI: http://dx.doi.org/10.1016/j.cie.2009.11.003
  32. Im S. S., Yoo D. G. and Kim J. H. "Smallest-small-world cellular harmony search for optimization of unconstrained benchmark problems." Journal of Applied Mathematics 2013 (2013). DOI: http://dx.doi.org/10.1155/2013/635608
  33. Al-Betar M. A., Khader A. T., Awadallah M. A., Alawan M. H. and Zaqaibeh B. "Cellular harmony search for optimization problems." Journal of Applied Mathematics 2013 (2013). DOI: http://dx.doi.org/10.1155/2013/139464
  34. Simpson A., Dandy G. and Murphy L. "Genetic algorithms compared to other techniques for pipe optimisation." Journal of Water Resources Planning and Management 120.4 (1994): 423-443. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
  35. Dandy G., Simpson, A. and Murphy L. "An improved genetic algorithm for pipe network optimisation." Water Resources Research 32.2 (1996): 449-458. DOI: http://dx.doi.org/10.1029/95WR02917
  36. Maier H., Simpson A., Zecchin A., Foong W., Phang K., Seah H. and Tan, C. "Ant colony optimization for design of water distribution systems," Journal of Water Resources Planning and Management 129.3 (2003): 200-209. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
  37. Suribabu C. R. and Neelakantan T. R. "Design of water distribution networks using particle swarm optimization." Urban Water Journal 3.2 (2006): 111-120. DOI: http://dx.doi.org/10.1080/15730620600855928
  38. Montalvo I., Izquierdo J., Perez R. and Tung, M. M. "Particle swarm optimization applied to the design of water supply systems." Computers and Mathematics with Applications 56 (2008): 769-776. DOI: http://dx.doi.org/10.1016/j.camwa.2008.02.006
  39. Geem, Z. W. "Optimal cost design of water distribution networks using harmony search." Engineering Optimization 38 (2006): 3,259-277.
  40. Vasan A. and Simonovic S. P. "Optimization of water distribution network design using differential evolution." Journal of Water Resources Planning and Management 136.2 (2010): 279-287. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(2010)136:2(279)
  41. Reca J. and Martinez J. "Genetic algorithms for the design of looped irrigation water distribution networks." Water Resources Research 42.5 (2006).
  42. Reca J., Martinez J., Gil C., and Banos R. "Application of several meta-heuristic techniques to the optimization of real looped water distribution networks." Water Resources Management 22.10 (2007): 1367-1379. DOI: http://dx.doi.org/10.1007/s11269-007-9230-8
  43. Bolognesi A., Bragalli C., Marchi A. and Artina, S. "Genetic heritage evolution by stochastic transmission in the optimal design of water distribution networks." Advances in Engineering Software 41 (2010): 792.801. https://doi.org/10.1016/j.advengsoft.2009.12.020
  44. Sadollah A., Yoo D. G. and Kim J. H. "Improved mine blast algorithm for optimal cost design of water distribution systems." Engineering Optimization ahead-of-print (2014) 1-17.