DOI QR코드

DOI QR Code

A Process Algebra Construct Method for Reduction of States in Reachability Graph: Conjunctive and Complement Choices

도달성 도표의 상태감소를 위한 프로세스 대수 구문 방법: 이음 선택과 여 선택

  • Received : 2015.09.16
  • Accepted : 2016.03.07
  • Published : 2016.05.15

Abstract

This paper introduces the new notions of conjunctive and complement choices in process algebra, which reduce both process and system complexities significantly for distributed mobile real-time system during specification and analysis phases. The complement choice implies that two processes make cohesive choices for their synchronous partners at their own choice operations. The conjunctive choice implies choice dependency among consecutive choice operations in a process. The conjunctive choice reduces process complexity exponentially by the degree of the consecutive choice operations. The complement choice also reduces system complexity exponentially by the degree of the synchronous choice operations. Consequently, the reduction method makes the specification and analysis of the systems much easier since the complexity is reduced significantly. This notion is implemented in a process algebra, called ${\delta}$-Calculus. The efficiency and effectiveness are demonstrated with an example in a tool for the algebra, called SAVE, which is developed on ADOxx platform.

본 논문은 분산 이동 실시간 시스템의 분석과 명세에서 프로세스와 시스템의 복잡도를 획기적으로 감소하기 위한 방법으로 새로운 이음 선택(Conjunctive Choice) 및 여 선택(Complement Choice) 연산을 제안한다. 여 선택 연산은 두 프로세스의 선택(Choice) 연산이 연동하여 동일한 선택을 도출함을 표현한다. 이음 선택 연산은 프로세스 내의 일련의 선택 연산들 간의 의존성을 표현한다. 이음 선택 연산은 프로세스 복잡도를 선택 연산의 의존성의 수 만큼 기하급수적으로 감소시킨다. 마찬가지로 여 선택 연산은 시스템 복잡도를 선택 연산의 의존성의 수 만큼 기하급수적으로 감소시킨다. 그리하여 복잡도가 획기적으로 감소하게 되어 시스템의 명세와 분석이 용이하게 된다. 이 선택 연산은 ${\delta}$-Calculus 프로세스 대수에서 구현하였다. 또한 예제를 ADOxx 플랫폼에서 개발한 SAVE 도구를 사용하여 보여줌으로써 효과와 효율성을 제시한다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 정보통신기술진흥센터

References

  1. E. M. Clark, D. E. Long, and K. L. McMillan, Compositional Model Checking, Proc. of Fourth Annual Symposium on Logic in Computer Science, 1989.
  2. W. J. Yeh and M. Young, Compositional Reachability Analysis using Process Algebra, Proc. of Conference on Testing, Analysis and Verification, pp. 49-59, Aug. 1992.
  3. B. Josson and J. Parrow, Deciding Bisimulation Equivalences for a Class of Non-finite-state Programs, Technical Report SICS/R-89/8908, Swedish Institute of Computer Science, Aug. 1989.
  4. S. Raju, An Automatic Verification Technique for Communicating Real-Time State Machines, Technical Report 93-04-08, Dept. of Computer Science and Engineering. Univ. of Washington, Apr. 1993.
  5. I. Kang and I. Lee, State Minimization for Concurrent System Analysis Based on State Space Exploration, Proc. of Conference on Computer Assurance, pp. 123-134, 1994.
  6. W. Choi, Y. Choe, M. Lee, A Reduction Method for Process and System Complexity with Conjunctive and Complement Choices in a Process Algebra, 39th Annual International Computer Software and Applications Conference Workshops, 2015.
  7. Y. Choe, M. Lee, ${\delta}$-Calculus: Process Algebra to Model Secure Movements of Distributed Mobile Processes in Real-Time Business Applications, 23rd European Conference on Information Systems, 2015.
  8. Fill, H. and Karagiannis, D., On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform, Enterprise Modelling and Information Systems Architectures 8(1). pp. 4-25, 2013.
  9. R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, H. Wong-Toi, Minimization of Timed Transition Systems, In W. R. Cleaveland, editor, CONCUR 92: 3rd Intl Conf on Concurrency Theory, Lecture Notes in Computer Science vol. 630, Springer, pp. 340-354, 1992.
  10. I. Kang, I. Lee and Y. Kim, An Efficient State Space Generation for the Analysis of Real-Time Systems, IEEE Transition on Software Engineering, Vol. 26, No. 5, pp. 453-477, 2000. https://doi.org/10.1109/32.846302