DOI QR코드

DOI QR Code

3D 프린팅을 이용한 얼굴 몰드 및 실리콘 마스크 제작

Fabrication of Face Molds and Silicone Masks using 3D Printing

  • 투고 : 2015.08.21
  • 심사 : 2016.01.12
  • 발행 : 2016.05.15

초록

노역분장을 위해서는 석고로 연기자의 얼굴 모형을 만들고, 그 위에 주름을 조소작업한 후 다시 석고로 음각 몰드를 제작하여 얼굴에 붙일 실리콘 피부 패치를 만들게 된다. 이러한 처리 과정은 며칠이 걸리며 연기자나 분장사에게 어려움을 주고 있다. 최근에 3D 프린팅 및 스캐닝 기술이 발전하여, 얼굴을 스캔하여 실물로 제작하는 것이 쉬워지고 있다. 본 논문에서는 석고나 조소작업 없이 노역분장용 실리콘 마스크를 간편하고 효율적으로 제작하기 위해, 얼굴 스캐닝, 인터랙티브 주름 모델링, 몰드 프린팅으로 이루어진 새로운 파이프라인을 제안한다. 고해상도 얼굴 모델에서도 주름을 실시간에 생성하기 위해 노멀맵 기반의 직관적인 스케치 인터페이스를 제시한다. 그리고 최종적인 주름의 기하를 깊이맵을 이용하여 복원하고, 주름진 얼굴의 음각 몰드를 프린팅한다. 또한 완성된 음각 몰드에 실리콘을 부은 뒤 원래의 양각 얼굴을 겹쳐 실리콘 마스크를 제작함으로써, 제안 파이프라인이 기존 방식보다 노역분장용 마스크를 간편하게 제작할 수 있음을 보인다.

For old-age makeups, makeup artists first make a mold cast of an actor's face using plaster and then sculpt wrinkles in clay on the plaster mold. After finishing the clay sculpture, its negative plaster mold is fabricated and silicone skin patches are finally made for application to the actor's face. This process takes a few days and is tedious for actors and makeup artists. With recent advances in 3D printing and scanning technology, it is becoming easier to scan and fabricate 3D faces. This paper presents a new pipeline composed of facial scanning, interactive wrinkle modeling, and mold printing stages to easily and efficiently fabricate silicone masks for old-age makeups without the use of plaster and clay. An intuitive sketch interface based on a normal map is proposed for the creation of wrinkles in real time, even with a high-resolution face model. Then the geometry of the final wrinkles is reconstructed using a depth map and the negative mold of the wrinkled face is printed. We also show that the presented pipeline can fabricate a silicone mask more conveniently than the traditional one that consists of pouring silicone into the prepared negative mold and then overlapping the mold with the original positive one.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. J. H. Choi, T. H. Cho, and S. M. Choi, "Automatic Matching of 3D Faces and Special Makeup Items for Makeup Design," Journal of KIISE, Vol. 41, No. 3, pp. 199-207, 2014. (in Korean)
  2. T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross, "High-quality single-shot capture of facial geometry," Proc. of the ACM SIGGRAPH 2010, Vol. 29, No. 4, pp. 40:1-40:9, Jul. 2010.
  3. T. Beller, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, and M. Gross, "High-quality passive facial performance capture using anchor frames," Journal of ACM Transactions on Graphics, Vol. 30, No. 4, pp. 75:1-75:10, Aug. 2011.
  4. J. R. Tena, M. Mahler, T. Beeler, M. Gross, H. Yeh, and I. Matthews, "Fabricating 3D Figurines with Personalized Faces," Journal of Computer Graphics and Applications IEEE, Vol. 33, No. 6, pp. 36-46, Nov. 2013. https://doi.org/10.1109/MCG.2013.83
  5. H. J. Kim, A. C. Oztireli, I.-K. Shin, M. Gross, and S. M. Choi, "Interactive generation of realistic facial wrinkles from sketchy drawings," Journal of Computer Graphics Forum (Proceedings of Eurographics), Vol. 34, No. 2, pp. 179-191, May. 2015. https://doi.org/10.1111/cgf.12551
  6. I.K. Shin, A. C. Oztireli, H.J. Kim, T. Beeler, M. Gross, and S.M. Choi, "Extraction and transfer of facial expression wrinkles for facial performance enhancement," Proc. of The Pacific Conference on Computer Graphics and Applications, pp. 113-118, Oct. 2014.
  7. S. Izadi, D. Kim, O. Hilliges, et al., "KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera," Proc. of the 24th annual ACM symposium on User interface software and technology, pp. 559-568, Oct. 2011.
  8. C. Santagti, L. Inzerillo, and F.D. Paola, "Imagebased modeling techniques for architectural heritage 3D digitalization: limits and potentialities," Journal of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XL-5, No. w2, pp. 555-560, Sep. 2013.
  9. F. Shi, H. Wu, X. Tong, and J. Chai, "Automatic acquisition of high-fidelity facial performances using monocular videos," Journal of ACM Transaction on Graphics, Vol. 33, No. 6, pp. 222:1-222:13, Nov. 2014.
  10. F. Xu, J. Chai, Y. Liu, and X. Tong, "Controllable High-fidelity Facial Performance Transfer," Journal of ACM Transactions on Graphics, Vol. 33, No. 4, pp. 42:1-42:11, Jul. 2014.
  11. K. Dmitriev, E. Makarov, "Generating displacement from normal map for use in 3D games," Proc. of the ACM SIGGRAPH 2011 talks, pp. 9, Aug. 2011.
  12. E. Sachs, S. Allen, M. Cima, E. Wylonis, and H. Guo, "Production of injection molding tooling with conformal cooling channels using the three dimensional printing process," Journal of Polymer Engineering and Science, Vol. 40, No. 5, pp. 1232-1247, May. 2000. https://doi.org/10.1002/pen.11251
  13. B. Bickel, P. Kaufmann, M. Skouras. et al., "Physical Face Cloning," Journal of ACM Transaction on Graphics, Vol. 31, No. 4, pp. 118:1-118:10, Jul. 2012.
  14. J.I. Echevarria, D. Bradley, D. Gutierrrez, and T. Beeler, "Capturing and Stylizing Hair for 3D Fabrication," Journal of ACM Transactions on Graphics, Vol. 33, No. 4, pp. 125:1-125:11, Jul. 2014.
  15. S. H. Park, S. G. Yim, S. Y. Yang, and S. H. Kim, "3D printing Technology for Biomedical Applications," KIC News, Vol. 18, No. 1, pp. 67-78, 2015. (in Korean)
  16. J. Sun, X. Chen, H. Liao, and J. Xi, "Templatebased framework for nasal prosthesis fabrication," Journal of Rapid Prototyping, Vol. 19, No. 2, pp. 68-76, Nov. 2013. https://doi.org/10.1108/13552541311302914