DOI QR코드

DOI QR Code

Characterization of Functional Domains in NME1L Regulation of NF-κB Signaling

  • You, Dong-Joo (Graduate School of Medicine, Korea University) ;
  • Park, Cho Rong (Graduate School of Medicine, Korea University) ;
  • Mander, Sunam (Graduate School of Medicine, Korea University) ;
  • Ahn, Curie (Transplantation Research Institute, Cancer Research Institute, Seoul National University) ;
  • Seong, Jae Young (Graduate School of Medicine, Korea University) ;
  • Hwang, Jong-Ik (Graduate School of Medicine, Korea University)
  • 투고 : 2015.11.25
  • 심사 : 2016.02.29
  • 발행 : 2016.05.31

초록

NME1 is a well-known metastasis suppressor which has been reported to be downregulated in some highly aggressive cancer cells. Although most studies have focused on NME1, the NME1 gene also encodes the protein (NME1L) containing N-terminal 25 extra amino acids by alternative splicing. According to previous studies, NME1L has potent anti-metastatic activity, in comparison with NME1, by interacting with $IKK{\beta}$ and regulating its activity. In the present study, we tried to define the role of the N-terminal 25 amino acids of NME1L in $NF-{\kappa}B$ activation signaling. Unfortunately, the sequence itself did not interact with $IKK{\beta}$, suggesting that it may be not enough to constitute the functional structure. Further construction of NME1L fragments and biochemical analysis revealed that N-terminal 84 residues constitute minimal structure for homodimerization, $IKK{\beta}$ interaction and regulation of $NF-{\kappa}B$ signaling. The inhibitory effect of the fragment on cancer cell migration and $NF-{\kappa}B$-stimulated gene expression was equivalent to that of whole NME1L. The data suggest that the N-terminal 84 residues may be a core region for the anti-metastatic activity of NME1L. Based on this result, further structural analysis of the binding between NME1L and $IKK{\beta}$ may help in understanding the anti-metastatic activity of NME1L and provide direction to NME1L and $IKK{\beta}$-related anti-cancer drug design.

키워드

참고문헌

  1. Amendola, R., Martinez, R., Negroni, A., Venturelli, D., Tanno, B., Calabretta, B., and Raschella, G. (1997). DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation. J. Natl. Cancer Inst. 89, 1300-1310. https://doi.org/10.1093/jnci/89.17.1300
  2. Boissan, M., De Wever, O., Lizarraga, F., Wendum, D., Poincloux, R., Chignard, N., Desbois-Mouthon, C., Dufour, S., Nawrocki-Raby, B., Birembaut, P., et al. (2010). Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells. Cancer Res. 70, 7710-7722. https://doi.org/10.1158/0008-5472.CAN-10-1887
  3. Cheng, S., Alfonso-Jaume, M.A., Mertens, P.R., and Lovett, D.H. (2002). Tumour metastasis suppressor, nm23-beta, inhibits gelatinase A transcription by interference with transactivator Ybox protein-1 (YB-1). Biochem. J. 366, 807-816. https://doi.org/10.1042/bj20020202
  4. Dearolf, C.R., Tripoulas, N., Biggs, J., and Shearn, A. (1988). Molecular consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev. Biol. 129, 169-178. https://doi.org/10.1016/0012-1606(88)90171-6
  5. Giraud, M.F., Georgescauld, F., Lascu, I., and Dautant, A. (2006). Crystal structures of S120G mutant and wild type of human nucleoside diphosphate kinase A in complex with ADP. J. Bioenerg. Biomembr. 38, 261-264. https://doi.org/10.1007/s10863-006-9043-0
  6. Hartsough, M.T., and Steeg, P.S. (2000). Nm23/nucleoside diphosphate kinase in human cancers. J. Bioenerg. Biomembr. 32, 301-308. https://doi.org/10.1023/A:1005597231776
  7. Horak, C.E., Lee, J.H., Elkahloun, A.G., Boissan, M., Dumont, S., Maga, T.K., Arnaud-Dabernat, S., Palmieri, D., Stetler-Stevenson, W.G., Lacombe, M.L., et al. (2007). Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res. 67, 7238-7246. https://doi.org/10.1158/0008-5472.CAN-07-0962
  8. Keim, D.R., Hailat, N., Kuick, R., Reynolds, C.P., Brodeur, G.M., Seeger, R.C., and Hanash, S.M. (1993). PCNA levels in neuroblastoma are increased in tumors with an amplified N-myc gene and in metastatic stage tumors. Clin. Exp. Metastasis 11, 83-90. https://doi.org/10.1007/BF00880069
  9. Kim, Y.I., Park, S., Jeoung, D.I., and Lee, H. (2003). Point mutations affecting the oligomeric structure of Nm23-H1 abrogates its inhibitory activity on colonization and invasion of prostate cancer cells. Biochem. Biophys. Res. Commun. 307, 281-289. https://doi.org/10.1016/S0006-291X(03)01195-1
  10. Kim, H.D., Youn, B., Kim, T.S., Kim, S.H., Shin, H.S., and Kim, J. (2009). Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol. Cell Biochem. 329, 167-173. https://doi.org/10.1007/s11010-009-0109-2
  11. Kim, M.S., Jeong, J., Shin, D.H., and Lee, K.J. (2013). Structure of Nm23-H1 under oxidative conditions. Acta Crystallogr. D Biol. Crystallogr. 69, 669-680. https://doi.org/10.1107/S0907444913001194
  12. Kwon, C.H., Moon, H.J., Park, H.J., Choi, J.H., and Park do, Y. (2013). S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells. Mol. Cells 35, 226-234. https://doi.org/10.1007/s10059-013-2269-x
  13. Lacombe, M.L., Milon, L., Munier, A., Mehus, J.G., and Lambeth, D.O. (2000). The human Nm23/nucleoside diphosphate kinases. J. Bioenerg. Biomembr. 32, 247-258. https://doi.org/10.1023/A:1005584929050
  14. Lascu, I., and Gonin, P. (2000). The catalytic mechanism of nucleoside diphosphate kinases. J. Bioenerg. Biomembr. 32, 237-246. https://doi.org/10.1023/A:1005532912212
  15. Lee, E., Jeong, J., Kim, S.E., Song, E.J., Kang, S.W., and Lee, K.J. (2009). Multiple functions of Nm23-H1 are regulated by oxidoreduction system. PLoS One 4, e7949. https://doi.org/10.1371/journal.pone.0007949
  16. Ma, D., Xing, Z., Liu, B., Pedigo, N.G., Zimmer, S.G., Bai, Z., Postel, E.H., and Kaetzel, D.M. (2002). NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-A promoter. J. Biol. Chem. 277, 1560-1567. https://doi.org/10.1074/jbc.M108359200
  17. Marino, N., Marshall, J.C., and Steeg, P.S. (2011). Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn. Schmiedebergs Arch. Pharmacol. 384, 351-362. https://doi.org/10.1007/s00210-011-0646-6
  18. Martinez, J.A., Prevot, S., Nordlinger, B., Nguyen, T.M., Lacarriere, Y., Munier, A., Lascu, I., Vaillant, J.C., Capeau, J., and Lacombe, M.L. (1995). Overexpression of nm23-H1 and nm23-H2 genes in colorectal carcinomas and loss of nm23-H1 expression in advanced tumour stages. Gut 37, 712-720. https://doi.org/10.1136/gut.37.5.712
  19. Min, K., Song, H.K., Chang, C., Kim, S.Y., Lee, K.J., and Suh, S.W. (2002). Crystal structure of human nucleoside diphosphate kinase A, a metastasis suppressor. Proteins 46, 340-342. https://doi.org/10.1002/prot.10038
  20. Munier, A., Serres, C., Kann, M.L., Boissan, M., Lesaffre, C., Capeau, J., Fouquet, J.P., and Lacombe, M.L. (2003). Nm23/NDP kinases in human male germ cells: role in spermiogenesis and sperm motility? Exp. Cell Res. 289, 295-306. https://doi.org/10.1016/S0014-4827(03)00268-4
  21. Murakami, M., Meneses, P.I., Knight, J.S., Lan, K., Kaul, R., Verma, S.C., and Robertson, E.S. (2008). Nm23-H1 modulates the activity of the guanine exchange factor Dbl-1. Int. J. Cancer 123, 500-510. https://doi.org/10.1002/ijc.23568
  22. Okabe-Kado, J., Kasukabe, T., Hozumi, M., Honma, Y., Kimura, N., Baba, H., Urano, T., and Shiku, H. (1995). A new function of Nm23/NDP kinase as a differentiation inhibitory factor, which does not require it's kinase activity. FEBS Lett. 363, 311-315. https://doi.org/10.1016/0014-5793(95)00338-A
  23. Otsuki, Y., Tanaka, M., Yoshii, S., Kawazoe, N., Nakaya, K., and Sugimura, H. (2001). Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc. Natl. Acad. Sci. USA 98, 4385-4390. https://doi.org/10.1073/pnas.071411598
  24. Ouatas, T., Salerno, M., Palmieri, D., and Steeg, P.S. (2003). Basic and translational advances in cancer metastasis: Nm23. J. Bioenerg. Biomembr. 35, 73-79. https://doi.org/10.1023/A:1023497924277
  25. Postel, E.H. (1999). Cleavage of DNA by human NM23-H2/nucleoside diphosphate kinase involves formation of a covalent protein-DNA complex. J. Biol. Chem. 274, 22821-22829. https://doi.org/10.1074/jbc.274.32.22821
  26. Salerno, M., Palmieri, D., Bouadis, A., Halverson, D., and Steeg, P.S. (2005). Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1). Erk scaffold in breast carcinoma cells. Mol. Cell Biol. 25, 1379-1388. https://doi.org/10.1128/MCB.25.4.1379-1388.2005
  27. Schlattner, U., Tokarska-Schlattner, M., Ramirez, S., Tyurina, Y.Y., Amoscato, A.A., Mohammadyani, D., Huang, Z., Jiang, J., Yanamala, N., Seffouh, A., et al. (2013). Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: a cardiolipin-dependent switch. J. Biol. Chem. 288, 111-121. https://doi.org/10.1074/jbc.M112.408633
  28. Seong, H.A., Jung, H., and Ha, H. (2007). NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta). receptor-interacting protein, and negatively regulates TGF-beta signaling. J. Biol. Chem. 282, 12075-12096. https://doi.org/10.1074/jbc.M609832200
  29. Song, E.J., Kim, Y.S., Chung, J.Y., Kim, E., Chae, S.K., and Lee, K.J. (2000). Oxidative modification of nucleoside diphosphate kinase and its identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biochemistry 39, 10090-10097. https://doi.org/10.1021/bi000267a
  30. Steeg, P.S., Bevilacqua, G., Pozzatti, R., Liotta, L.A., and Sobel, M.E. (1988). Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 48, 6550-6554.
  31. Steeg, P.S., Horak, C.E., and Miller, K.D. (2008). Clinical-translational approaches to the Nm23-H1 metastasis suppressor. Clin. Cancer Res. 14, 5006-5012. https://doi.org/10.1158/1078-0432.CCR-08-0238
  32. Tokunaga, Y., Urano, T., Furukawa, K., Kondo, H., Kanematsu, T., and Shiku, H. (1993). Reduced expression of nm23-H1, but not of nm23-H2, is concordant with the frequency of lymph-node metastasis of human breast cancer. Int. J. Cancer 55, 66-71. https://doi.org/10.1002/ijc.2910550113
  33. Tseng, Y.H., Vicent, D., Zhu, J., Niu, Y., Adeyinka, A., Moyers, J.S., Watson, P.H., and Kahn, C.R. (2001). Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res. 61, 2071-2079.
  34. Venturelli, D., Martinez, R., Melotti, P., Casella, I., Peschle, C., Cucco, C., Spampinato, G., Darzynkiewicz, Z., and Calabretta, B. (1995). Overexpression of DR-nm23, a protein encoded by a member of the nm23 gene family, inhibits granulocyte differentiation and induces apoptosis in 32Dc13 myeloid cells. Proc. Natl. Acad. Sci. USA 92, 7435-7439. https://doi.org/10.1073/pnas.92.16.7435
  35. Wallet, V., Mutzel, R., Troll, H., Barzu, O., Wurster, B., Veron, M., and Lacombe, M.L. (1990). Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J. Natl. Cancer Inst. 82, 1199-1202. https://doi.org/10.1093/jnci/82.14.1199
  36. Wang, C.H., Ma, N., Lin, Y.T., Wu, C.C., Hsiao, M., Lu, F.L., Yu, C.C., Chen, S.Y., and Lu, J. (2012). A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal. Stem Cells 30, 2199-2211. https://doi.org/10.1002/stem.1203
  37. Yang, M., Jarrett, S.G., Craven, R., and Kaetzel, D.M. (2009). YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposideinduced DNA damage. Mutat. Res. 660, 74-78. https://doi.org/10.1016/j.mrfmmm.2008.09.015
  38. You, D.J., Park, C.R., Lee, H.B., Moon, M.J., Kang, J.H., Lee, C., Oh, S.H., Ahn, C., Seong, J.Y., and Hwang, J.I. (2014). A splicing variant of NME1 negatively regulates NF-kappaB signaling and inhibits cancer metastasis by interacting with IKKbeta. J. Biol. Chem. 289, 17709-17720. https://doi.org/10.1074/jbc.M114.553552
  39. Zhang, Q., McCorkle, J.R., Novak, M., Yang, M., and Kaetzel, D.M., (2011). Metastasis suppressor function of NM23-H1 requires its 3'-5' exonuclease activity. Int. J. Cancer 128, 40-50. https://doi.org/10.1002/ijc.25307
  40. Zhou, Q., Yang, X., Zhu, D., Ma, L., Zhu, W., Sun, Z., and Yang, Q. (2007). Double mutant P96S/S120G of Nm23-H1 abrogates its NDPK activity and motility-suppressive ability. Biochem. Biophys. Res. Commun. 356, 348-353. https://doi.org/10.1016/j.bbrc.2007.02.066
  41. Zhu, J., Tseng, Y.H., Kantor, J.D., Rhodes, C.J., Zetter, B.R., Moyers, J.S., and Kahn, C.R. (1999). Interaction of the Rasrelated protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc. Natl. Acad. Sci. USA 96, 14911-14918. https://doi.org/10.1073/pnas.96.26.14911