DOI QR코드

DOI QR Code

MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions

  • Seok, Heeyoung (Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University) ;
  • Ham, Juyoung (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University) ;
  • Jang, Eun-Sook (EncodeGEN Co. Ltd.) ;
  • Chi, Sung Wook (Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2016.01.25
  • 심사 : 2016.04.04
  • 발행 : 2016.05.31

초록

MicroRNAs (miRNAs) are small non-coding RNAs (~22 nucleotides) regulating gene expression at the post-transcriptional level. By directing the RNA-induced silencing complex (RISC) to bind specific target mRNAs, miRNA can repress target genes and affect various biological phenotypes. Functional miRNA target recognition is known to majorly attribute specificity to consecutive pairing with seed region (position 2-8) of miRNA. Recent advances in a transcriptome-wide method of mapping miRNA binding sites (Ago HITS-CLIP) elucidated that a large portion of miRNA-target interactions in vivo are mediated not only through the canonical "seed sites" but also via non-canonical sites (~15-80%), setting the stage to expand and determine their properties. Here we focus on recent findings from transcriptome-wide non-canonical miRNA-target interactions, specifically regarding "nucleation bulges" and "seed-like motifs". We also discuss insights from Ago HITS-CLIP data alongside structural and biochemical studies, which highlight putative mechanisms of miRNA target recognition, and the biological significance of these non-canonical sites mediating marginal repression.

키워드

참고문헌

  1. Agarwal, V., Bell, G.W., Nam, J.W., and Bartel, D.P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife 4.
  2. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
  3. Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455, 64-71. https://doi.org/10.1038/nature07242
  4. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002
  5. Bernstein, E., Kim, S.Y., Carmell, M.A., Murchison, E.P., Alcorn, H., Li, M.Z., Mills, A.A., Elledge, S.J., Anderson, K.V., and Hannon, G.J. (2003). Dicer is essential for mouse development. Nat. Genet. 35, 215-217. https://doi.org/10.1038/ng1253
  6. Boudreau, R.L., Jiang, P., Gilmore, B.L., Spengler, R.M., Tirabassi, R., Nelson, J.A., Ross, C.A., Xing, Y., and Davidson, B.L. (2014). Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 81, 294-305. https://doi.org/10.1016/j.neuron.2013.10.062
  7. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85. https://doi.org/10.1371/journal.pbio.0030085
  8. Brodersen, P., and Voinnet, O. (2009). Revisiting the principles of microRNA target recognition and mode of action. Nat. Rev. Mol. Cell Biol. 10, 141-148.
  9. Chandradoss, S.D., Schirle, N.T., Szczepaniak, M., MacRae, I.J., and Joo, C. (2015). A dynamic search process underlies microRNA targeting. Cell 162, 96-107. https://doi.org/10.1016/j.cell.2015.06.032
  10. Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486. https://doi.org/10.1038/nature08170
  11. Chi, S.W., Hannon, G.J., and Darnell, R.B. (2012). An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321-327. https://doi.org/10.1038/nsmb.2230
  12. Croce, C.M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704-714. https://doi.org/10.1038/nrg2634
  13. Didiano, D., and Hobert, O. (2006). Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct Mol. Biol. 13, 849-851. https://doi.org/10.1038/nsmb1138
  14. Easow, G., Teleman, A.A., and Cohen, S.M. (2007). Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198-1204. https://doi.org/10.1261/rna.563707
  15. Eichhorn, S.W., Guo, H., McGeary, S.E., Rodriguez-Mias, R.A., Shin, C., Baek, D., Hsu, S.H., Ghoshal, K., Villen, J., and Bartel, D.P. (2014). mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104-115. https://doi.org/10.1016/j.molcel.2014.08.028
  16. Elkayam, E., Kuhn, C.D., Tocilj, A., Haase, A.D., Greene, E.M., Hannon, G.J., and Joshua-Tor, L. (2012). The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100-110. https://doi.org/10.1016/j.cell.2012.05.017
  17. Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Ann. Rev. Biochem. 79, 351-379. https://doi.org/10.1146/annurev-biochem-060308-103103
  18. Filipowicz, W. (2005). RNAi: the nuts and bolts of the RISC machine. Cell 122, 17-20. https://doi.org/10.1016/j.cell.2005.06.023
  19. Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105.
  20. Grimson, A. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91-105. https://doi.org/10.1016/j.molcel.2007.06.017
  21. Grosswendt, S., Filipchyk, A., Manzano, M., Klironomos, F., Schilling, M., Herzog, M., Gottwein, E., and Rajewsky, N. (2014). Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54, 1042-1054. https://doi.org/10.1016/j.molcel.2014.03.049
  22. Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840. https://doi.org/10.1038/nature09267
  23. Haecker, I., Gay, L.A., Yang, Y., Hu, J., Morse, A.M., McIntyre, L.M., and Renne, R. (2012). Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog. 8, e1002884. https://doi.org/10.1371/journal.ppat.1002884
  24. Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jr., Jungkamp, A.C., Munschauer, M., et al. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129-141. https://doi.org/10.1016/j.cell.2010.03.009
  25. Hammell, M. (2008). mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat. Methods 5, 813-819. https://doi.org/10.1038/nmeth.1247
  26. He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531. https://doi.org/10.1038/nrg1379
  27. Hebert, S.S., and De Strooper, B. (2009). Alterations of the microRNA network cause neurodegenerative disease. Trend Neurosci. 32, 199-206. https://doi.org/10.1016/j.tins.2008.12.003
  28. Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665. https://doi.org/10.1016/j.cell.2013.03.043
  29. Hendrickson, D.G., Hogan, D.J., Herschlag, D., Ferrell, J.E., and Brown, P.O. (2008). Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 3, e2126. https://doi.org/10.1371/journal.pone.0002126
  30. Jo, M.H., Shin, S., Jung, S.R., Kim, E., Song, J.J., and Hohng, S. (2015). Human argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell 59, 117-124. https://doi.org/10.1016/j.molcel.2015.04.027
  31. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human MicroRNA targets. PLoS Biol. 2, e363. https://doi.org/10.1371/journal.pbio.0020363
  32. Kameswaran, V., Bramswig, N.C., McKenna, L.B., Penn, M., Schug, J., Hand, N.J., Chen, Y., Choi, I., Vourekas, A., Won, K.J., et al. (2014). Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metabol. 19, 135-145. https://doi.org/10.1016/j.cmet.2013.11.016
  33. Karginov, F.V. (2007). A biochemical approach to identifying microRNA targets. Proc. Natl. Acad. Sci. USA 104, 19291-19296. https://doi.org/10.1073/pnas.0709971104
  34. Kim, V.N. (2005). Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1-15. https://doi.org/10.1016/j.molcel.2005.05.026
  35. Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126-139.
  36. Kim, K.K., Ham, J., and Chi, S.W. (2013). miRTCat: a comprehensive map of human and mouse microRNA target sites including non-canonical nucleation bulges. Bioinformatics 29, 1898-1899. https://doi.org/10.1093/bioinformatics/btt296
  37. Kim, S., Seo, D., Kim, D., Hong, Y., Chang, H., Baek, D., Kim, V.N., Lee, S., and Ahn, K. (2015). Temporal landscape of microRNAmediated host-virus crosstalk during productive human cytomegalovirus infection. Cell Host Microbe 17, 838-851. https://doi.org/10.1016/j.chom.2015.05.014
  38. Kishore, S., Jaskiewicz, L., Burger, L., Hausser, J., Khorshid, M., and Zavolan, M. (2011). A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 8, 559-564. https://doi.org/10.1038/nmeth.1608
  39. Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D.J., Luscombe, N.M., and Ule, J. (2010). iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct Mol. Biol. 17, 909-915. https://doi.org/10.1038/nsmb.1838
  40. Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-73. https://doi.org/10.1093/nar/gkt1181
  41. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37, 495-500. https://doi.org/10.1038/ng1536
  42. Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O'Day, E., Chowdhury, D., Dykxhoorn, D.M., Tsai, P., Hofmann, O., et al. (2009). miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol. Cell 35, 610-625. https://doi.org/10.1016/j.molcel.2009.08.020
  43. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. https://doi.org/10.1016/0092-8674(93)90529-Y
  44. Lee, H.S., Seok, H., Lee, D.H., Ham, J., Lee, W., Youm, E.M., Yoo, J.S., Lee, Y.S., Jang, E.S., and Chi, S.W. (2015). Abasic pivot substitution harnesses target specificity of RNA interference. Nat. Commun. 6, 10154. https://doi.org/10.1038/ncomms10154
  45. Leung, A.K., Young, A.G., Bhutkar, A., Zheng, G.X., Bosson, A.D., Nielsen, C.B., and Sharp, P.A. (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct Mol. Biol. 18, 237-244. https://doi.org/10.1038/nsmb.1991
  46. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798. https://doi.org/10.1016/S0092-8674(03)01018-3
  47. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. https://doi.org/10.1016/j.cell.2004.12.035
  48. Licatalosi, D.D. (2008). HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464-469. https://doi.org/10.1038/nature07488
  49. Lim, L.P. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773. https://doi.org/10.1038/nature03315
  50. Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441. https://doi.org/10.1126/science.1102513
  51. Loeb, G.B., Khan, A.A., Canner, D., Hiatt, J.B., Shendure, J., Darnell, R.B., Leslie, C.S., and Rudensky, A.Y. (2012). Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760-770. https://doi.org/10.1016/j.molcel.2012.10.002
  52. Long, D., Lee, R., Williams, P., Chan, C.Y., Ambros, V., and Ding, Y. (2007). Potent effect of target structure on microRNA function. Nat. Struct Mol. Biol. 14, 287-294. https://doi.org/10.1038/nsmb1226
  53. Mili, S., and Steitz, J.A. (2004). Evidence for reassociation of RNAbinding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692-1694. https://doi.org/10.1261/rna.7151404
  54. Moore, M.J., Scheel, T.K., Luna, J.M., Park, C.Y., Fak, J.J., Nishiuchi, E., Rice, C.M., and Darnell, R.B. (2015). miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6, 8864. https://doi.org/10.1038/ncomms9864
  55. Mourelatos, Z. (2008). Small RNAs: the seeds of silence. Nature 455, 44-45. https://doi.org/10.1038/455044a
  56. Nakanishi, K., Weinberg, D.E., Bartel, D.P., and Patel, D.J. (2012). Structure of yeast Argonaute with guide RNA. Nature 486, 368-374. https://doi.org/10.1038/nature11211
  57. Olson, E.N. (2014). MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Translational Med. 6, 239ps233.
  58. Park, C.Y., Choi, Y.S., and McManus, M.T. (2010). Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 19, R169-175. https://doi.org/10.1093/hmg/ddq367
  59. Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226-230. https://doi.org/10.1038/nature03076
  60. Rajewsky, N. (2006). MicroRNA target predictions in animals. Nat. Genet. 38, S8-S13. https://doi.org/10.1038/ng1798
  61. Riley, K.J., Rabinowitz, G.S., Yario, T.A., Luna, J.M., Darnell, R.B., and Steitz, J.A. (2012a). EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 31, 2207-2221. https://doi.org/10.1038/emboj.2012.63
  62. Riley, K.J., Yario, T.A., and Steitz, J.A. (2012b). Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 18, 1581-1585. https://doi.org/10.1261/rna.034934.112
  63. Salomon, W.E., Jolly, S.M., Moore, M.J., Zamore, P.D., and Serebrov, V. (2015). Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84-95. https://doi.org/10.1016/j.cell.2015.06.029
  64. Schirle, N.T., and MacRae, I.J. (2012). The crystal structure of human Argonaute2. Science 336, 1037-1040. https://doi.org/10.1126/science.1221551
  65. Schirle, N.T., Sheu-Gruttadauria, J., and MacRae, I.J. (2014). Structural basis for microRNA targeting. Science 346, 608-613. https://doi.org/10.1126/science.1258040
  66. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63. https://doi.org/10.1038/nature07228
  67. Seok, H., Jang, E.S., and Chi, S.W. (2016). Rationally designed siRNAs without miRNA-like off-target repression. BMB Rep. 49, 135-136. https://doi.org/10.5483/BMBRep.2016.49.3.019
  68. Shin, C., Nam, J.W., Farh, K.K., Chiang, H.R., Shkumatava, A., and Bartel, D.P. (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789-802. https://doi.org/10.1016/j.molcel.2010.06.005
  69. Sim, S.E., Bakes, J., and Kaang, B.K. (2014). Neuronal activitydependent regulation of microRNAs. Mol. Cells 37, 511-517. https://doi.org/10.14348/molcells.2014.0132
  70. Stark, A., Brennecke, J., Russell, R.B., and Cohen, S.M. (2003). Identification of Drosophila microRNA targets. PLoS Biol. 1, E60. https://doi.org/10.1371/journal.pbio.0000060
  71. Stefani, G., and Slack, F.J. (2012). A 'pivotal' new rule for microRNA-mRNA interactions. Nat. Struct Mol. Biol. 19, 265-266. https://doi.org/10.1038/nsmb.2256
  72. Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124-1128. https://doi.org/10.1038/nature07299
  73. Tomari, Y., and Zamore, P.D. (2005). Perspective: machines for RNAi. Genes Dev. 19, 517-529. https://doi.org/10.1101/gad.1284105
  74. Ule, J. (2003). CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212-1215. https://doi.org/10.1126/science.1090095
  75. Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K., and Slack, F.J. (2004). The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3[prime]UTR. Genes Dev. 18, 132-137. https://doi.org/10.1101/gad.1165404
  76. Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G.S., Tuschl, T., and Patel, D.J. (2009). Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754-761. https://doi.org/10.1038/nature08434
  77. Wee, L.M., Flores-Jasso, C.F., Salomon, W.E., and Zamore, P.D. (2012). Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055-1067. https://doi.org/10.1016/j.cell.2012.10.036
  78. Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862. https://doi.org/10.1016/0092-8674(93)90530-4
  79. Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005). Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434, 338-345. https://doi.org/10.1038/nature03441
  80. Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., Wang, G., Wu, Q., Wei, C., Bi, Y., et al. (2013). Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82-96. https://doi.org/10.1016/j.cell.2012.11.045
  81. Yao, C., Sasaki, H.M., Ueda, T., Tomari, Y., and Tadakuma, H. (2015). Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol. Cell 59, 125-132. https://doi.org/10.1016/j.molcel.2015.05.015
  82. Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596. https://doi.org/10.1126/science.1097434
  83. Zhang, C., and Darnell, R.B. (2011). Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607-614. https://doi.org/10.1038/nbt.1873
  84. Zisoulis, D.G., Lovci, M.T., Wilbert, M.L., Hutt, K.R., Liang, T.Y., Pasquinelli, A.E., and Yeo, G.W. (2010). Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct Mol. Biol. 17, 173-179. https://doi.org/10.1038/nsmb.1745

피인용 문헌

  1. Naturally existing isoforms of miR-222 have distinct functions 2017, https://doi.org/10.1093/nar/gkx788
  2. Coordinated Actions of MicroRNAs with other Epigenetic Factors Regulate Skeletal Muscle Development and Adaptation vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040840
  3. MiR-346 promotes the biological function of breast cancer cells by targeting SRCIN1 and reduces chemosensitivity to docetaxel vol.600, 2017, https://doi.org/10.1016/j.gene.2016.11.037
  4. Evaluation and control of miRNA-like off-target repression for RNA interference 2018, https://doi.org/10.1007/s00018-017-2656-0
  5. MicroRNA-142 controls thymocyte proliferation vol.47, pp.7, 2017, https://doi.org/10.1002/eji.201746987
  6. Circulating miRNAs from blood, plasma or serum as promising clinical biomarkers in oral squamous cell carcinoma: A systematic review of current findings vol.63, 2016, https://doi.org/10.1016/j.oraloncology.2016.11.001
  7. The role of microRNAs inAnophelesbiology-an emerging research field vol.39, pp.2, 2017, https://doi.org/10.1111/pim.12405
  8. Noncoding RNAs in the Vascular System Response to Oxidative Stress 2019, https://doi.org/10.1089/ars.2017.7229
  9. Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle ofAedes aegypti vol.114, pp.10, 2017, https://doi.org/10.1073/pnas.1701474114
  10. Association between polymorphisms in microRNA target sites and survival in early-stage non-small cell lung cancer 2017, https://doi.org/10.1111/1759-7714.12478
  11. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101712
  12. Epstein-Barr viral microRNAs target caspase 3 vol.13, pp.1, 2016, https://doi.org/10.1186/s12985-016-0602-7
  13. MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth vol.13, pp.7, 2017, https://doi.org/10.1371/journal.pgen.1006896
  14. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico vol.6, pp.1, 2016, https://doi.org/10.1038/srep36625
  15. MicroRNAs Modulate Oxidative Stress in Hypertension through PARP-1 Regulation vol.2017, 2017, https://doi.org/10.1155/2017/3984280
  16. Fine-Tuning of Gene Expression by tRNA-Derived Fragments during Abiotic Stress Signal Transduction vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020518
  17. MicroRNAs from plants to animals, do they define a new messenger for communication? vol.15, pp.1, 2018, https://doi.org/10.1186/s12986-018-0305-8
  18. miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts vol.14, pp.7, 2018, https://doi.org/10.1371/journal.pcbi.1006185
  19. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression pp.1420-9071, 2019, https://doi.org/10.1007/s00018-018-2940-7
  20. Re-expression of microRNA-4319 inhibits growth of prostate cancer via Her-2 suppression vol.20, pp.11, 2018, https://doi.org/10.1007/s12094-018-1871-y
  21. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A vol.51, pp.3, 2018, https://doi.org/10.1111/cpr.12438
  22. hsa-miR-29c-3p regulates biological function of colorectal cancer by targeting SPARC vol.8, pp.61, 2016, https://doi.org/10.18632/oncotarget.22356
  23. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells vol.16, pp.1, 2017, https://doi.org/10.1186/s12943-017-0725-5
  24. CLIPick: a sensitive peak caller for expression-based deconvolution of HITS-CLIP signals vol.46, pp.21, 2016, https://doi.org/10.1093/nar/gky917
  25. siAbasic: a comprehensive database for potent siRNA-6Ø sequences without off-target effects vol.2018, pp.None, 2016, https://doi.org/10.1093/database/bay109
  26. MicroRNA-142-3p is involved in regulation of MGMT expression in glioblastoma cells vol.10, pp.None, 2016, https://doi.org/10.2147/cmar.s157261
  27. Post-Transcriptional Control of Tropoelastin in Aortic Smooth Muscle Cells Affects Aortic Dissection Onset vol.41, pp.3, 2018, https://doi.org/10.14348/molcells.2018.2193
  28. How RNAi machinery enters the world of telomerase vol.18, pp.10, 2016, https://doi.org/10.1080/15384101.2019.1609834
  29. Bioinformatic analysis of miR-4792 regulates Radix Tetrastigma hemsleyani flavone to inhibit proliferation, invasion, and induce apoptosis of A549 cells vol.12, pp.None, 2016, https://doi.org/10.2147/ott.s182525
  30. Modulation of Bacterial sRNAs Activity by Epigenetic Modifications: Inputs from the Eukaryotic miRNAs vol.10, pp.1, 2019, https://doi.org/10.3390/genes10010022
  31. Upregulation of miR-214 Induced Radioresistance of Osteosarcoma by Targeting PHLDA2 via PI3K/Akt Signaling vol.9, pp.None, 2016, https://doi.org/10.3389/fonc.2019.00298
  32. Genetical modification on adipose-derived stem cells facilitates facial nerve regeneration vol.11, pp.3, 2016, https://doi.org/10.18632/aging.101790
  33. Exosomes, metastases, and the miracle of cancer stem cell markers vol.38, pp.1, 2016, https://doi.org/10.1007/s10555-019-09793-6
  34. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA vol.16, pp.7, 2016, https://doi.org/10.1080/15476286.2019.1600934
  35. Current experimental strategies for intracellular target identification of microRNA vol.1, pp.1, 2016, https://doi.org/10.1186/s41544-018-0002-9
  36. Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5 vol.24, pp.1, 2019, https://doi.org/10.1186/s11658-019-0151-3
  37. Long non-coding RNA UCA1 exerts growth modulation by miR-15a in human thyroid cancer TPC-1 cells vol.47, pp.1, 2016, https://doi.org/10.1080/21691401.2019.1606007
  38. A cell-based probabilistic approach unveils the concerted action of miRNAs vol.15, pp.12, 2016, https://doi.org/10.1371/journal.pcbi.1007204
  39. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.581007
  40. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy vol.20, pp.2, 2016, https://doi.org/10.2174/1566524019666191001113511
  41. miR‐188‐5p suppresses cellular proliferation and migration via IL6ST: A potential noninvasive diagnostic biomarker for breast cancer vol.235, pp.5, 2020, https://doi.org/10.1002/jcp.29367
  42. Hydrostatic pressure induces osteogenic differentiation of adipose-derived mesenchymal stem cells through increasing lncRNA-PAGBC vol.12, pp.13, 2020, https://doi.org/10.18632/aging.103448
  43. Position-specific oxidation of miR-1 encodes cardiac hypertrophy vol.584, pp.7820, 2020, https://doi.org/10.1038/s41586-020-2586-0
  44. miR-421 promotes the viability of A549 lung cancer cells by targeting forkhead box O1 vol.20, pp.6, 2020, https://doi.org/10.3892/ol.2020.12169
  45. 6′-O-galloylpaeoniflorin regulates proliferation and metastasis of non-small cell lung cancer through AMPK/miR-299-5p/ATF2 axis vol.21, pp.1, 2016, https://doi.org/10.1186/s12931-020-1277-6
  46. TRPM2-AS Promotes Bladder Cancer by Targeting miR-22-3p and Regulating GINS2 mRNA Expression vol.14, pp.None, 2016, https://doi.org/10.2147/ott.s282151
  47. MicroRNA expression profile and identification of novel microRNA biomarkers for metabolic syndrome vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1952817
  48. Construction and Analysis of Survival-Associated Competing Endogenous RNA Network in Lung Adenocarcinoma vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/4093426
  49. Prediction methods for microRNA targets in bilaterian animals: Toward a better understanding by biologists vol.19, pp.None, 2016, https://doi.org/10.1016/j.csbj.2021.10.025
  50. AGO-accessible anticancer siRNAs designed with synergistic miRNA-like activity vol.23, pp.None, 2016, https://doi.org/10.1016/j.omtn.2021.01.018
  51. The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder vol.11, pp.3, 2016, https://doi.org/10.3390/jpm11030167
  52. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches vol.1, pp.2, 2016, https://doi.org/10.1002/cso2.1028
  53. Mechanical overload‐induced muscle‐derived extracellular vesicles promote adipose tissue lipolysis vol.35, pp.6, 2016, https://doi.org/10.1096/fj.202100242r
  54. Eating microRNAs: pharmacological opportunities for cross‐kingdom regulation and implications in host gene and gut microbiota modulation vol.178, pp.11, 2021, https://doi.org/10.1111/bph.15421
  55. MicroRNAs’ role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration vol.28, pp.28, 2016, https://doi.org/10.1007/s11356-021-14550-w
  56. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development vol.11, pp.8, 2016, https://doi.org/10.3390/biom11081074
  57. Human TYRP1: Two functions for a single gene? vol.34, pp.5, 2016, https://doi.org/10.1111/pcmr.12951
  58. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases vol.99, pp.9, 2016, https://doi.org/10.1139/cjpp-2020-0581
  59. Functional analysis of a putative Bombyx mori cypovirus miRNA BmCPV‐miR‐10 and its effect on virus replication vol.30, pp.6, 2021, https://doi.org/10.1111/imb.12725
  60. Crosstalk between codon optimality and cis -regulatory elements dictates mRNA stability vol.22, pp.1, 2016, https://doi.org/10.1186/s13059-020-02251-5
  61. Overexpression of an Osa-miR162a Derivative in Rice Confers Cross-Kingdom RNA Interference-Mediated Brown Planthopper Resistance without Perturbing Host Development vol.22, pp.23, 2016, https://doi.org/10.3390/ijms222312652