References
- Arikoglu, A. and Ozkol, I. (2010), "Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method", Compos. Struct., 92, 3031-3039. https://doi.org/10.1016/j.compstruct.2010.05.022
- Bagdatli, S.M., Ozkaya, E. and Oz, H.R. (2011), "Dynamics of axially accelerating beams with an intermediate support", J. Vib. Acoust., 133, 1-10.
- Banerjee, J.R. (1997), "Dynamic stiffness for structural elements: A general approach", Comput. Struct., 63, 101-103. https://doi.org/10.1016/S0045-7949(96)00326-4
- Banerjee, J.R. and Gunawardana, W.D. (2007), "Dynamic stiffness matrix development and free vibration analysis of a moving beam", J. Sound Vib., 303, 135-143. https://doi.org/10.1016/j.jsv.2006.12.020
- Banerjee, J.R. (2012), "Free vibration of beams carrying spring-mass systems-A dynamic stiffness approach", Comput. Struct., 104-105, 21-26. https://doi.org/10.1016/j.compstruc.2012.02.020
- Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
- Bao-hui, L., Hang-shan, G., Hong-bo, Z., Yong-shou, L. and Zhou-feng, Y. (2011), "Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method", Nucl. Eng. Des., 241, 666-671. https://doi.org/10.1016/j.nucengdes.2010.12.002
- Bickford, W.B. (1982), "A consistent higher order beam theory", Develop. Theor. Appl. Mech., 11, 137-150.
- Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 246-269.
- Catal, S. (2014), "Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 52(5), 971-995. https://doi.org/10.12989/sem.2014.52.5.971
- Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-63. https://doi.org/10.12989/sem.2006.24.1.051
- Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
- Catal, S. (2012), "Response of forced Euler-Bernoulli beams using differential transform method", Struct. Eng. Mech., 42(1), 95-119. https://doi.org/10.12989/sem.2012.42.1.095
- Chen, C.K. and Ho, S. H. (1986), "Application of differential transformation to eigenvalue problems", Appl. Math. Comput., 79, 173-188.
- Chen, L.Q., Tang, Y.Q. and Lim, C.W. (2010), "Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams", J. Sound Vib., 329, 547-565. https://doi.org/10.1016/j.jsv.2009.09.031
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Eisenberger, M. (2003), "An exact high order beam element", Comput. Struct., 81, 147-152. https://doi.org/10.1016/S0045-7949(02)00438-8
- Eisenberger, M. (2003), "Dynamic stiffness vibration analysis using a high-order beam model", Int. J. Numer. Meth. Eng., 57, 1603-1614. https://doi.org/10.1002/nme.736
- Heyliger, P.R. and Reddy J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126, 309-326. https://doi.org/10.1016/0022-460X(88)90244-1
- Ho, S.H. and Chen, C.K. (2006), "Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform", Int. J. Mech. Sci., 48, 1323-1331. https://doi.org/10.1016/j.ijmecsci.2006.05.002
- Jun, L., Hongxing, H. and Rongying, H. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Comput. Struct., 84, 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007
- Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech. A/Solid., 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004
- Lee, U., Kim, J. and Oh, H. (2004), "Spectral analysis for the transverse vibration of an axially moving Timoshenko beam", J. Sound Vib., 271, 685-703. https://doi.org/10.1016/S0022-460X(03)00300-6
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74, 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Nefovska-Danilovic, M. and Petronijevic, M. (2015), "In-plane free vibration and response analysis of isotropic rectengular plates using the dynamic stiffness method", Comput. Struct., 152, 82-95. https://doi.org/10.1016/j.compstruc.2015.02.001
- Ozkaya, E. and Oz, H.R. (2002), "Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252, 782-789. https://doi.org/10.1006/jsvi.2001.3991
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N., Wang, C.M. and Lee, K.H. (1997), "Relationships between bending solutions of classical and shear deformation beam theories", Int. J. Solid. Struct., 34, 3373-3384. https://doi.org/10.1016/S0020-7683(96)00211-9
- Semnani, S.J., Attarnejad, R. and Firouzjaei, R.K. (2013), "Free vibration analysis of variable thickness thin plates by two-dimensional differential transform method", Acta Mechanica, 224, 1643-1658. https://doi.org/10.1007/s00707-013-0833-2
- Soldatos, K.P. and Sophocleous, C. (2001), "On shear deformable beam theories: The frequency and normal mode equations of the homogenous orthotropic Bickford beam", J. Sound Vib., 242, 215-245. https://doi.org/10.1006/jsvi.2000.3367
- Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Computers and Structures, 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001
- Wattanasakulpong, N. and Charoensuk, J. (2015), "Vibration characteristics of stepped beams made of FGM using differential transformation method", Meccanica, 50, 1089-1101. https://doi.org/10.1007/s11012-014-0054-3
- Wickert, J.A. and Mote, C.D. (1989), "On the energetics of axially moving continua", J. Acoust. Soc. Am., 85, 1365-1368. https://doi.org/10.1121/1.397418
- Yan, Q.Y., Ding, H. and Chen, L.Q. (2014), "Periodic responses and chaotic behaviors of an axially accelerating viscoelastic Timoshenko beam", Nonlin. Dyn., 78, 1577-1591. https://doi.org/10.1007/s11071-014-1535-6
- Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., 31, 453-476. https://doi.org/10.12989/sem.2009.31.4.453
- Yesilce, Y. (2010), "Differential transform method for free vibration analysis of a moving beam", Struct. Eng. Mech., 35, 645-658. https://doi.org/10.12989/sem.2010.35.5.645
- Yesilce, Y. (2011), "Free vibrations of a Reddy-Bickford multi-span beam carrying multiple spring-mass systems", Shock Vib., 18, 709-726. https://doi.org/10.1155/2011/892736
- Yesilce, Y. (2013), "Determination of natural frequencies and mode shapes of axially moving Timoshenko beams with different boundary conditions using differential transform method", Adv. Vib. Eng., 12, 89-108.
- Yesilce, Y. (2015), "Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias", Struct. Eng. Mech., 53, 537-573. https://doi.org/10.12989/sem.2015.53.3.537
- Zhou, J.K. (1968), Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, China.
Cited by
- Modeling and analysis of an axially acceleration beam based on a higher order beam theory vol.53, pp.10, 2018, https://doi.org/10.1007/s11012-018-0840-4
- Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application vol.61, pp.1, 2016, https://doi.org/10.12989/sem.2017.61.1.105
- Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline vol.62, pp.1, 2016, https://doi.org/10.12989/sem.2017.62.1.065
- Dynamic stiffness formulations for harmonic response of infilled frames vol.68, pp.2, 2016, https://doi.org/10.12989/sem.2018.68.2.183
- Free vibration analysis of transmission lines based on the dynamic stiffness method vol.6, pp.3, 2016, https://doi.org/10.1098/rsos.181354
- Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.293