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Abstract 
 

In this paper, we present a novel authenticated group key distribution scheme for large and 

dynamic multicast groups without employing traditional symmetric and asymmetric 

cryptographic operations. The security of our scheme is mainly based on the basic theories for 

solving linear equations. In our scheme, a large group is divided into many subgroups, where 

each subgroup is managed by a subgroup key manager (SGKM) and a group key generation 

center (GKGC) further manages all SGKMs. The group key is generated by the GKGC and 

then propagated to all group members through the SGKMs, such that only authorized group 

members can recover the group key but unauthorized users cannot. In addition, all authorized 

group members can verify the authenticity of group keys by a public one-way function. The 

analysis results show that our scheme is secure and efficient, and especially it is very 

appropriate for secure multicast communications in large and dynamic client-server networks. 
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1. Introduction 

Distributing a group key to all group members is a complicated task especially in a dynamic 

group where members may join and leave at any time. When any member joins/leaves the 

group, it needs to update and redistribute the group key to all group members, in order to 

ensure that a leaving member cannot learn about the new group keys after he leaves the group 

and a new member cannot learn about the previous group keys after he joins the group. In last 

decades, group key management had received much attention and was always a research 

focus. Therefore, lots of group key management schemes have been proposed. Generally 

speaking, these schemes can be roughly classified into three categories: a centralized key 

distribution scheme, a distributed key agreement scheme, and a hybrid group key 

management scheme. 

In centralized key distribution schemes [1-9], all group members trust a centralized key 

management center, which generates and distributes the group keys and is also responsible to 

update the group key when group members join or leave the group. One of the most known 

centralized key distribution schemes was the logical key hierarchy (LKH) [1,2], which 

reduced the rekey messages and encryption operations from O(N) to O(logN), where N was 

the number of group members. An improvement in the binary key tree was the one-way 

function tree (OFT) [3] in which an internal node key was generated from its children node 

keys. In comparison with the top-down LKH method, the bottom-up OFT algorithm 

approximately halved the number of bits that needed to be broadcast to members in order to 

rekey after a member was added or evicted. Furthermore, Perrig et al. [4] proposed an 

Efficient Large-group Key (ELK) distribution scheme. It was similar to OFT in the sense that 

intermediate keys were generated from its children, but pseudo-random functions (PRFs) 

were used rather than one-way functions, thus it further reduced the size of rekey messages 

for each member join from logN to 0. However, for a member join, the manager had to 

re-compute all auxiliary keys of the key tree. 

In distributed key agreement schemes [10-21], all group members contribute to the 

generation of group keys and are equally responsible for the rekeying and distribution of 

group keys. In 1976, Diffie and Hellman [10] first described a method for two parties to agree 

upon a shared key in such a way the key would be unavailable to eavesdroppers. Thereafter, 

there were many distributed key agreement schemes, where most distributed key agreement 

schemes were the natural generalizations of the DH key agreement scheme. Well known 

schemes among these were perhaps the works of Ingemarsson et al. [11], Burmester and 

Desmedt [12], Steiner et al. [13], Joux et al. [14] and Kim et al. [15]. 

In hybrid group key management schemes [22-26], the authors make the best use of the 

individual advantages of both the centralized key distribution scheme and the distributed key 

agreement scheme. For example, Kwak et al. [25] presented a hybrid group key management 

scheme, which combined the LKH [1,2] and the tree-based group Diffie-Hellman (TGDH) 

schemes [15], and thus avoided the single point of failure problems of the LKH with much 

more enhanced performance than the TGDH. 

In addition, there were also some novel group key management schemes for emerging 

networks. For example, in 2011, N.T.T. Huyen, et al. [27] presented  two approaches for the 

polynomical pre-distribution scheme by exploiting the signal range and the deployment error, 

which are especially suitable for sensor networks. In 2013, to overcome the high frequency of 

group rekeying, D.H. Je et al. [28] proposed a novel group key management scheme, which is 
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very suitable for vehicle networks. Above all, their proposed subscription-period-aware key 

management scheme can greatly reduce the communication, computation, and storage 

complexity in multicast group rekeying from O(N) to O(1), where N is the number of vehicles 

in a single group rekeying process. 

In this paper, we mainly focus on the centralized key distribution schemes, which are more 

suitable for a large and dynamic multicast group due to low computation and communication 

costs. In early proposed group key schemes, the main secure goal is to protect the 

confidentiality of a broadcast key or re-key message, but lack of authentication. So these 

schemes simplify the security problem by assuming a passive adversary. To protect against 

active adversaries, most existed schemes can be transformed to the corresponding 

authenticated group key schemes using public key cryptographic techniques as the compiler 

of Katz and Yung [16]. However, the management of the public keys in a large and dynamic 

group is also a heavy burden. Thus, to seek an efficient authenticated group key distribution 

scheme without using public key cryptographic techniques becomes a very significant work 

in secure group communications. 

In this paper, we present a novel authenticated group key distribution scheme for large and 

dynamic multicast groups without employing traditional symmetric and asymmetric 

cryptographic techniques. The security of our scheme is mainly based on the basic theories for 

solving linear equations. Compared with other centralized key distribution schemes of Key 

trees, or hierarchical key structures, our scheme has four highlighted advantages: 1) Our 

proposed scheme is not based on any difficult assumption; 2) When any group member 

joins/leaves the group, the number of auxiliary secrets (or keys) required to be updated is O(1) 

instead of O(logN); 3) In order to obtain the group key, the computation cost of each group 

member is very low because it only needs to compute one inner product instead of other 

complex cryptographic operations; 4) It can provide group key authentication without using 

encryption and signature techniques. 

2. Preliminaries 

2.1 The secure goals of group key management 

Referring to the literatures [4,9], we first review four secure goals of group key management: 

Group Key Confidentiality, Forward Secrecy, Backward Secrecy and Group Key 

Authentication. 

1. Group Key Confidentiality is to protect the group key such that it can only be 

recovered by authorized group members; but not by any unauthorized user. 

2. Forward Secrecy is to guarantee that a passive adversary who knows a contiguous 

subset of old group keys cannot discover subsequent group keys. This property ensures that a 

member cannot learn about the new group keys after he leaves the group. 

3. Backward Secrecy is to guarantee that a passive adversary who knows a subset of 

group keys cannot discover preceding group keys. This property ensures that a new member 

cannot learn about the previous group keys after he joins the group. 

4. Group key authentication is to provide assurance to authorized group members that 

the group key is distributed by GKGC; but not by an active attacker. 

When any group member joins/leaves a group, obviously it needs to execute a rekeying 

(updating group key) procedure in order to maintain the forward secrecy and backward 

secrecy. 
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2.2 The basic theories for solving linear equations 

There are lots of basic theories involved in solving linear equations. In the following section, 

we only introduce two theorems related to this paper.  

Theorem 1. The necessary and sufficient condition for the solvability of linear equations 

yxA


  is that the rank of the coefficient matrix A  is equal to that of the augmented matrix 

A . That is, )A((A) rr  . Where A  is an nm  matrix, x


 an n -dimensional vector and y


 an 

m -dimensional vector. 

Theorem 2. Furthermore, for the solvable linear equations yxA


 , if nr )(A , there 

exists a unique solution; if nr )(A , there exist infinitely many solutions. Furthermore, for 

the solvable linear equations yxA


  over pZ , if nr )(A , there exist at least p  solutions, 

where p  is a large prime integer and }1,...,2,1,0{  pZ p . 

3. Proposed Scheme 

3.1 Model 

Our model is a hierarchical tree structure, as shown in Fig. 1. In our model, a large group is 

divided into several subgroups which are independent of each other. Each subgroup is 

managed by a subgroup key manager (SGKM), and then all SGKMs are managed by a group 

key generator center (GKGC), which is responsible for generating, distributing and updating 

group keys for secure communications by all group members. 
 

 

 

 

 

 

 

 

 

 

Fig. 1. The illustrations of a hierarchical tree structure 

 

The hierarchical model described above is especially suitable for secure multicast 

communications in some “client-server” networks, such as e-commerce systems, where the 

GKGC is the electronic trade center or server center, each SGKM is a region agent, and all 

members are clients. In order to decrypt the encryption messages broadcasted by the center, 

all authorized clients (i.e., members) need to subscribe to a shared group key with their 

respective region agents in advance. 
 

 

 

SGKM2 SGKM3 SGKM1 SGKMt 

GKGC 

2,1U  1,1U  3,1U  
1,1 sU  1,2U  2,2U  

2,2 sU  
3,3 sU  2,3U  1,3U  

tstU ,  2,tU  1,tU  
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3.2 Group Initialization 

In the following protocols, we assume that the GKGC manages t SGKMs and each SGKMi has 

si members ( ti 1 ), as shown in Fig. 1. Group initialization consists of two main processes: 

the Initial Parameters Generation, and the SGKMs and Members Registration. The detailed 

description is as follows: 

The Initial Parameters Generation. The GKGC first selects a large prime p  and a secure 

one-way hash function )(H  and announces them to all group members publicly. Then, he 

privately generates an nm  matrix A  ( nm 1  and tn  ) and another m -dimensional 

column vector y


 over pZ , such that there exist at least p  solutions of the linear equations 

yxA


  over  pZ  (i.e., it implies nr )(A ). The detailed algorithm of generating the matrix 

A  and vector y


 is as follows. 

Algorithm of generating A  and y


 

1. Randomly generate an nm   matrix A  over pZ . 

2. Verify that nr )(A  using Gaussian elimination method, or else goto 1 and restart. 

3. Randomly generate an n -dimensional vector 0x


 over pZ . 

4. Compute 0xAy


 .  //It guarantees that )A((A) rr   in yxA


 . 

5. Output ( A  and y


).  

// Therefore, there exist at least p  solutions of the linear equations yxA


  over  pZ . 

 

Similarly, each SGKMi ( ti 1 ) privately generates an ii nm   matrix iA  ( ii nm 1  and 

ii sn  ) and another im -dimensional column vector iy


 over pZ , such that there exist at least 

p  solutions of the linear equations ii yxA


  over  pZ . 

The SGKMs and Members Registration. Furthermore, each SGKM is required to register 

at the GKGC as a legal region agent. During the SGKMs registration, the GKGC generates a 

unique n -dimensional column vector ix


 for each SGKMi ( ti 1 ), such that ix


 satisfies the 

equation of yxA


i  (that is, ix


 is a solution of the linear equations, yxA


 ), and then 

secretly sends ix


 to the SGKMi as his auxiliary secret. Similarly, each member is required to 

register at their respective SGKMi for subscribing the key distribution service. During the 

members registration, the SGKMi generates a unique in -dimensional column vector ji,x


 for 

each member jiU ,  )1( isj  , such that ji,x


 satisfies the equation of ijii yxA


,  (that is, ji,x


 

is a solution of the linear equations, ii yxA


 ), and then secretly sends ji,x


 to the member jiU ,  

as his/her auxiliary secret. 

3.3 The Group Key Generation and Distribution 

The group key generation and distribution protocol (called GKG&D protocol hereafter) 

includes the following five steps:  

Step 1. The GKGC randomly selects an m -dimensional column vector k


 over pZ  and 

computes Akr
T


 . Then the GKGC broadcasts r


to all SGKMs. 

Step 2. Furthermore, the GKGC computes yk

gk  and )(gkH . Here yk


  denotes the inner 

product of the vectors k


 and y


, that is, 



m

i
ii yk

1

yk


, where ),...,,( 21 m

T kkkk


 and 
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),...,,( 21 m

T yyyy


. Suppose that there is a public server at the GKGC, which is utilized to 

publish )(gkH  timely. In addition, we assume that all SGKMs and group members can only 

browse )(gkH  from the public server, but not modify it.  

Step 3. Subsequently, each SGKMi computes i

T

igk xr

  and verifies its authenticity by the 

equation of )()(
?

gkHgkH i  . If the equation is true (i.e., gkgki  ), the SGKMi randomly 

selects 1im  integers, 1ik , 2ik , …, )1( imik , over pZ , and then computes and further gets 
iimk  

by the equation of iii gk yk


(i.e., iimimmimiiiii gkykykykyk
iiii
  )1()1(2211 ... ), where 

),,...,,( )1(21 ii immiii

T

i kkkk k


 and ),,...,,( )1(21 ii immiii

T

i yyyy y


; or else, this process ends up in 

failure.  

Step 4. Each SGKMi computes i

T

ii Akr


  and broadcasts ir


 to his/her all members.  

Step 5. After receiving the broadcasted messages from the SGKMi, each member 

jiU , )1( isj   computes ji

T

ijiuk ,, xr

  and verifies whether the equation of )()(

?

, gkHukH ji   

is correct. If it is correct, then he/she will believe that the shared group key is jiuk ,  indeed (i.e., 

gkuk ji , ); or else, this process ends up in failure. 

The correctness proofs:  

Suppose that 



























mnmm

n

n

aaa

aaa

aaa

21

22221

11211


A  and ),...,,( 21 inii

T

i xxxx


. Since Akr
T


  and 

i

T

igk xr

 , it gives  

i

T

igk xAk
T 

 )(  

















































in

i

i

T

mnmm

n

n

m

x

x

x

aaa

aaa

aaa

kkk


2

1

21

22221

11211

21 ]),...,,[(  



















































in

i

i

mnmnn

mm

mm

x

x

x

akakak

akakak

akakak


2

1

2211

2222121

1212111

...

...

...

 

2222212111212111 )...()...( immimm xakakakxakakak   

inmnmnn xakakak )...(... 2211   

)...()...( 2222121212121111 inniiinnii xaxaxakxaxaxak   

)...(... 2211 inmnimimm xaxaxak   

mm ykykyk  ...2211  (by yxA


i ).                                                              (1)                                                                                                                 
 

In addition,  
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mm

mm

ykykyk

y

y

y

k

k

k

gk 











































 ...2211

2

1

2

1




yk .                                     (2) 

 

By Eqs.1 and 2, it is obvious that gkgki   for ttoi 1 , that is, gkgkgkgk t  21 . 

Similarly, let 





























i

nm

i

m

i

m

i

n

ii

i

n

ii

i

iiii

i

i

aaa

aaa

aaa

21

22221

11211


A  and ),...,,( ,,2,,1,,, injijiji

T

ji xxxx


. Since i

T

ii Akr


  and 

ji

T

ijiuk ,, xr

 , then 

ji

T

iijiuk ,, )( xAk
T 

  



















































iiiii

i

i

i

nji

ji

ji

T

i

nm

i

m

i

m

i

n

ii

i

n

ii

imii

x

x

x

aaa

aaa

aaa

kkk

,,

2,,

1,,

21

22221

11211

21 ]),...,,[(


 



















































iiiiii

ii

ii

nji

ji

ji

i

nmim

i

ni

i

ni

i

mim

i

i

i

i

i

mim

i

i

i

i

x

x

x

akakak

akakak

akakak

,,

2,,

1,,

2211

2222121

1212111

...

...

...


 

 ...()...( 2221211,,1212111

i

i

i

iji

i

mim

i

i

i

i akakxakakak
ii

 

iiiiiiii nji

i

nmim

i

ni

i

niji

i

mim xakakakxak ,,22112,,2 )...(...)   

 2,,221,,212,,12,,121,,111 ()...( ji

i

ji

i

inji

i

nji

i

ji

i

i xaxakxaxaxak
ii

 

)...(...)... ,,2,,21,,1,,2 iiiiiiii nji

i

nmji

i

mji

i

mimnji

i

n xaxaxakxa   

ii imimiiii ykykyk  ...2211  (by ijii yxA


, )  ,                               (3) 

 

ii

ii

imimiiii

im

i

i

im

i

i

iii ykykyk

y

y

y

k

k

k

gk 











































 ...2211

2

1

2

1




yk                             (4) 

 

Thus, there must exist isiii gkukukuk
i
 ,2,1,  for ttoi 1 .  Please note that the above 

computations are all over pZ .  

To sum up, gkuk ji ,  for istoj 1  and ttoi 1 . That is, all group members obtain a 

shared group key gk . 

 

 

 



942                                                               Shi R.H et al.: A Novel Authenticated Group Key Distribution Scheme 

3.4 Rekeying 

In order to maintain the forward secrecy and backward secrecy, a rekeying procedure must be 

executed when the GKGC withdraws/adds any SGKM or any member joins/leaves the group. 

Withdrawing any SGKMs. Suppose that the GKGC wants to withdraw the jth SGKM (i.e., 

SGKMj, tj 1 ). Then the group key must be updated. The rekeying procedure includes two 

steps as follows:  

In the first step, the GKGC needs to renews his auxiliary secrets A  and y


. He first founds 

the linear equations as Eq.5 by all ix


s of the remaining SGKMs, and then recomputes A  and 

y


 as new unknowns by using Gaussian elimination method in Eq.5. Please note that 1x


, 

2x


,…, 1jx


, 1jx


,…, tx


 are 1t  known vectors in the following linear equations. 































yxA

yxA

yxA

yxA

yxA













t

j

j

1

1

2

1

                                                                       (5) 

Since the matrix A  is nm   dimension and the vector y


 is m  dimension, obviously there 

exist mnm   unknown variables while there are only mt  )1(  equations in Eq.5. Thus 

there must be infinitely many solutions of A  and y


 in Eq.5 because the number of unknown 

values is far more than that of equations. Furthermore, the GKGC computes a new particular 

solution of A  and y


 by Eq.5, which is different from the old solution, such that yxA


i  

( ji  ) but yxA


j . 

In the second step, the GKGC regenerates the group key gk  based on the new auxiliary 

secrets A  and y


 by executing the GKG&D protocol again. That is, the GKGC randomly 

selects a new vector k


 over pZ , recomputes Akr
T


  and yk


gk , broadcasts r


 to all 

remaining SGKMs, and renews )(gkH  in the public server. Furthermore, each remaining 

SGKMi computes and verifies their respective subgroup key igk  by the new broadcasted 

message from the GKGC. At last, all members obtain the new group key gk  by the same 

method as the initial group key generation and distribution in the GKG&D protocol. 

Adding a new SGKM. Suppose that the new SGKM is marked as SGKMt+1. Similarly, the 

group key must be updated. Since nt  , so nt 1 . After adding a new SGKM, it still 

satisfies the property that the column number of the matrix A  is greater than or equal to that 

of the SGMKs. So, when a new SGKMt+1 requests to join the group, the GKGC only needs to 

generate another unique 1tx


 ( yxA


1t ) and secretly sends it to the SGKMt+1 while other 

secret ix


s are unaltered. Then the GKGC again executes the GKG&D protocol to update the 

group key.  

Please note that it must satisfy nt   in this dynamic protocol in order to prevent the 

collusion attacks (see Theorem. 5). In case of nt  , if adding a new SGMK, it needs to 

regenerate A  by using the similar method as withdrawing any SGMKs, such that the column 

number of the matrix A  is greater than that of the SGMKs.  
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Removing any member: Suppose that a member jiU ,  of the SGKMi requests to leave the 

group. After confirming his leaving, the SGKMi needs to renew old secrets { iA , iy


} in order 

to protect backward secrecy. Similarly, the SGKMi first creates the similar linear equations 

like Eq.5 by the secrets ( ji,x


s) of all remaining members and then recomputes { iA , iy


} as 

unknowns. Furthermore, the SGKMi requests the GKGC to update the group key due to his 

member leaving. At last, the GKGC again executes the GKG&D protocol to renew the group 

key.  

Adding a new member: Suppose that a new member, 1, isiU , requests to join the subgroup 

of the SGKMi. After receiving a join request message of 1, isiU , the SGKMi first performs the 

register procedure to verify the identity of new member. If the SGKMi agrees his join request, 

the SGKMi generates another unique 1, isix


 ( isii i
yxA


1, ) and secretly sends it to 1, isiU . 

Similarly, the SGKMi again requests the GKGC to update the group key due to his new 

member joining. At last, the GKGC executes the GKG&D protocol to renew the group key.  

In addition, in order to reduce the overhead of high frequent joins and leaves, we can 

consider rekeying in a batch as the method in the literature [5]. 

4. Analysis 

4.1 Security Analysis 

We have proved the correctness of the above proposed scheme. Furthermore, we focus on 

their security analysis, which sees Theorem 3, 4 and 5 in detail. 

Theorem 3. The proposed scheme achieves four security goals of group key management: 

1) Group Key Confidentiality, 2) Forward Secrecy, 3) Backward Secrecy, 4) Group key 

authentication. 

Proof. 1) Group Key Confidentiality is guaranteed by the security of the public message 

)(gkH  and the broadcast message r


. Here, we assume that )(H  is a secure one-way hash 

function. Therefore, any unauthorized users cannot obtain the group key gk only from the 

public message )(gkH . Similarly, for any unauthorized users, he/she cannot get the group 

key gk  only from the broadcast message r


, because i

Tgk xr

  or yk


gk , where ix


 and 

y


 are unknown, and k


 is randomly and secretly generated by the GKGC.  2) Forward 

Secrecy is guaranteed by the rekeying procedure. Whenever an SGKM, or a member, leaving 

the group, it needs to update not only the group key but also the auxiliary secrets { A , y


}, or 

{ iA , iy


}. Thus, the leaving SGKM or member cannot learn about new group keys after he 

leaves the group since yxA


j  ( ijii yxA


, ). 3) Backward Secrecy is guaranteed by the fact 

that the group key is always updated whenever new SGKM or member joining the group. 4) 

Key Authentication is provided through the value of )(gkH  generated by the GKGC who 

owns the secrets { A , y


}. For any active attacker, it is impossible to forge a broadcast vector 
*

r


 without the secrets A  and y


, such that )()( * gkHH i

T xr


 (i.e., gki

T  xr
* ) for all i . 

Please note that )(gkH  is published at the public server of the GKGC, and can only be 

modified by the GKGC. 

Theorem 4 (Outsider attack). Our scheme is secure against outsider attack. 

Proof. 1) Firstly, we assume that an outsider active attacker who impersonates the GKGC to 

broadcast a forged key or rekeying message in order to share a group key with all group 
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members. As the above analysis in Theorem 3, it is impossible for the attacker to successfully 

pass the authenticity verification (i.e., for a forged *
r


, obviously it must be 

)()( * gkHH i

T xr


)  because he can’t modified )(gkH  at the public server of the GKGC. 

Secondly, we assume that an outsider active attacker who impersonates a group member for 

requesting a group key service. In our scheme, each member needs to beforehand subscribe 

the group key service, and then obtains the respective secret ji,x


 which is shared with the 

manager, SGKMi. Thus, legal group key service requests from group members can be 

authenticated by their respective secret ji,x


. At last, the attacker cannot obtain any secret 

information of the group key direct from the broadcasted key messages due to the 

confidentiality of group keys analyzed above in Theorem 3. 2) In addition, the value of r


 are 

obviously different for every rekeying process because k


 is randomly generated, and thus 

our scheme is secure against the replay attack. Therefore, our scheme is secure against 

outsider attack. 

Theorem 5 (Insider attack). Our scheme is secure against insider attack. 

Proof. For each SGMKi, he only knows his secret vector ix


. By his secret vector ix


and the 

broadcasted vector r


, obviously, SGMKi can obtain the value of igk  by computing 

i

T

igk xr

 , which is the shared group key (i.e., gkgki  ). However, he cannot get any secret 

information about the matrix A  and the vector y


, because ),...,,( 21 m

T kkkk


 is randomly and 

secretly selected by the GKGC. Similarly, each member cannot obtain any secret information 

about the matrix iA  and the vector iy


. Furthermore, our scheme is secure against the 

collusion attacks of the insider SGKMs or members. Especially, we assume that all t  SGKMs 

try to get the secrets of the GKGC (i.e., A and y


) with colluding each other. In order to 

achieve this aim, they collude to found the following equations by their respective secret ix


s: 
 



















yxA

yxA

yxA








t

2

1

                                                                             (6) 

 

However, for these colluding SGKMs, there are mnm   unknown variables while there 

are only mt   equations ( nt  ) in Eq.6. Thus, they do not obtain any secret information of 

A and y


 only from Eq.6 based on the basic theories for solving linear equations. Similarly, all 

subgroup members cannot get any secret information about iA  and iy


 yet. In fact, even if all 

SGKMs and all group members collude to perform this attack they cannot obtain the secrets of 

the GKGC, and furthermore they cannot impersonate the GKGC to authorize a new SGKM or 

update group keys. 

4.2 Performance Analysis 

By Theorem 5, there are at most n  SGKMs in our proposed scheme in order to resist the 

collusion attacks of all SGKMs. In the following section, we assume that there are just n  

SGKMs in a group and each SGKM also has n  group members. Thus, there are total 2n  group 

members in a group.  

In our proposed scheme, whenever a member joins the group, the SGKMi only needs to 

generate new member’s secret ji,x


 based on his secret linear equations, and further requests 
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the GKGC to update the group key. Whenever a member leaves the group, the SGKMi only 

needs to renew his auxiliary secret ( iA , iy


) based on the known linear equations, and further 

requests the GKGC to update the group key. In the updating the group key (i.e., GKG&D) 

procedure, it only takes one multiplication of the vector and the matrix for the GKGC, two 

inner products for the SGKMi, and one inner product for each member, respectively, instead of 

other complex cryptographic operations. Table 1 shows the main computation costs of 

LKH[1,2], OFT[3], ELK[4], HL[9] and our proposed scheme, where E, D, R, H, F, P, M, S 

denote the computation costs of encryption, decryption, random key generation, hashing, 

pseudo-random function, the N-degree interpolating polynomial, scalar multiplication and a 

particular solution of the linear equations, respectively. From Table 1, the most complex 

computation of our scheme is to solve a particular solution of the linear equations. Please note 

that it is not to compute all general solutions. As we know, it is easier to compute a particular 

solution than the general solution. Compared with other group key management schemes, 

obviously the computation costs of our scheme are lower, especially for group members. 

Table 1. The main computation costs of LKH, OFT, ELK, HL and our proposed scheme 

 LKH OFT ELK HL Ours 

Join 

GKGC (2E+R)logN (2E+2H+F)logN ElogN+(2N-1)F+R NP+1R+1H (mn+n)M+1H 

SGKM - - - - 1S+2nM+1H 

Old 

member 

D logN D logN D logN 1P+1H nM+1H 

New 

member 

D logN (D+H) logN 2FlogN 1P+1H nM+1H 

Leave 

GKGC (2E+R)logN (E+H+F)logN (2E+7F)logN NP+1R+1H (mn+n)M+1H 

SGKM - - - - 1S+2nM+1H 

Member D logN (D+F) logN (D+4F)logN 1P+1H nM+1H 

Table 2. The communication and storage costs of LKH, OFT, ELK, HL and our proposed scheme 

 LKH OFT ELK HL Ours 

Communication 

(broadcast) 

Join 2logNL logNL 0 (2N+1)L nL 

Leave 2logNL logNL logNL (2N+1)L nL 

Storage 

GKGC (2N-1)L (2N-1)L (2N-1)L 2NL (m+mn+nn)L 

SGKM - - - - (m+n+mn+nn)L 

Member logNL (logN+1)L logNL 2L nL 

 

Furthermore, in our proposed scheme, for GKGC, the communication cost is mainly used 

to broadcast key or rekeying. The size of the broadcasted key or rekeying message (mainly 

including an n -dimensional vector r


) is nL, where the constant L is the size of the group key. 

In addition, each SGKM needs to broadcast an nL-size message to his group members in order 

to transfer the group key. For the storage cost, it involves three kinds of participants: GKGC, 

SGKM and group member in our scheme. For GKGC, SGKM and group member, it needs to 

store { A , y


 and all ix


s}, { ix


, iA , iy


 and all ji,x


s}, and { ji,x


}, respectively. The detailed 

comparisons are listed in Table 2. In addition, please note that we can let 2m  ( nm 1 ) to 

reduce the storage cost. 

In addition, the proposed scheme can be easily and naturally extended into the single-level 
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and multi-level architecture, as shown in Fig. 2 and Fig. 3, respectively. In Fig. 2, the GKGC 

directly utilize a linear equation ( yxA


 ) to distribute the group keys to all group members. 

As the literature [9], the single-level architecture is only suitable for a group with a small 

group size. Assume that there are N  group members in Fig. 2. Then the GKGC needs to 

broadcast a message containing N  elements to all group members, which is lower than the 

HL scheme [9] (including N  points). Especially, our scheme has better computation 

complexity than their scheme because each member only needs to compute N  scalar 

multiplications (i.e., one inner product) instead of an N-degree interpolating polynomial. In 

Fig. 3, each internal node uses a secret linear equation ( ii yxA


 ) to transfer the group key 

message from his parent node to his all child nodes, where the internal nodes can also be 

group members (i.e., group members play the part of the internal nodes). When any group 

member or internal node joins/leaves the group, the number of auxiliary secrets required to be 

updated in the secret tree is O(1) instead of O(log N), which is just required in the key tree 

methods, such as LKH, OFT and ELK. 

Furthermore, in order to extend more group members, we may first build multiple groups 

managed by different GKGCs using the method proposed above, respectively, and further 

combine these groups into a larger group using a well-known distribution key agreement 

scheme (see Fig. 4), such as BD [12], TDH [14] and TGDH [15]. Thus it becomes a hybrid 

group key management scheme. In this hybrid scheme, all GKGCs first agree a group key 

using a distribution key agreement scheme and then propagate it to their respective group 

members using the proposed distribution method above. 

 
 

 

 

 

 

 

 

Fig. 2. The single-level auxiliary secret tree         Fig. 3. The multi-level auxiliary secret tree 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A hybrid group key management scheme 
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5. Conclusion 

We have presented an authenticated group key management scheme, which is divided into 

two or multiple levels to achieve it based on the basic theories for solving linear equations. 

This scheme is suitable for secure multicast communications in some client-server networks 

due to its higher efficiency, flexibility and adaptability. Especially, our scheme has some 

good advantages as follows. 

1) For the GKGC, when adding/removing any group member, he does not need to do 

anything else except updating the group key. Furthermore, when updating the group 

key it only needs to broadcast new group key information to all SGKMs. In addition, 

even if adding/removing any SGKM it is also easy to implement it because the most 

complex computation is to solve a particular solution of the linear equations, yxA


 . 

2) For the SGKMs, it is very easy to recover the group keys, and further it only needs to 

broadcast different subgroup key information to their respective members when 

transferring the group key. In addition, when adding/removing any SGKM it does not 

need to update the remaining SGKMs’ auxiliary secrets (i.e., ix


s). 

3) For group members, it takes very low computation cost to recover the group key 

because it only needs to compute an inner product instead of other complex 

cryptographic operations, and when adding/removing any member it does not need to 

update the remaining members’ auxiliary secrets (i.e., ji,x


s).  

4) Our scheme provides authenticated information used for the authentication of the group 

key without employing symmetric and asymmetric cryptographic operations. 
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