DOI QR코드

DOI QR Code

Membrane-bound p35 Subunit of IL-12 on Tumor Cells is Functionally Equivalent to Membrane-bound Heterodimeric Single Chain IL-12 for Induction of Anti-tumor Immunity

  • Hyun-Jin Kim (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Sang Min Park (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Hayyoung Lee (Institute of Biotechnology, Chungnam National University) ;
  • Young Sang Kim (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2016.05.06
  • Accepted : 2016.06.14
  • Published : 2016.10.31

Abstract

In this study, we compared two different tumor cell vaccines for their induction of anti-tumor immunity; one was a tumor cell clone expressing a membrane-bound form of IL-12 p35 subunit (mbIL-12 p35 tumor clone), and the other was a tumor clone expressing heterodimeric IL-12 as a single chain (mb-scIL-12 tumor clone). The stimulatory effect of mb-scIL-12 on the proliferation of ConA-activated splenocytes was higher than that of mbIL-12 p35 in vitro. However, the stimulatory effect of mbIL-12 p35 was equivalent to that of recombinant soluble IL-12 (3 ng/ml). Interestingly, both tumor clones (mbIL-12 p35 and mb-scIL-12) showed similar tumorigenicity and induction of systemic anti-tumor immunity in vivo, suggesting that tumor cell expression of the membrane-bound p35 subunit is sufficient to induce anti-tumor immunity in our tumor vaccine model.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A4A01013202) and a grant from Chungnam National University (2014).

References

  1. Schoenhaut, D. S., A. O. Chua, A. G. Wolitzky, P. M. Quinn, C. M. Dwyer, W. McComas, P. C. Familletti, M. K. Gately, and U. Gubler. 1992. Cloning and expression of murine IL-12. J. Immunol. 148: 3433-3440.  https://doi.org/10.4049/jimmunol.148.11.3433
  2. Trinchieri, G. 1994. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84: 4008-4027.  https://doi.org/10.1182/blood.V84.12.4008.bloodjournal84124008
  3. Hsieh, C. S., S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'Garra, and K. M. Murphy. 1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547-549.  https://doi.org/10.1126/science.8097338
  4. Gately, M. K., R. R. Warrier, S. Honasoge, D. M. Carvajal, D. A. Faherty, S. E. Connaughton, T. D. Anderson, U. Sarmiento, B. R. Hubbard, and M. Murphy. 1994. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int. Immunol. 6: 157-167.  https://doi.org/10.1093/intimm/6.1.157
  5. Hendrzak, J. A., and M. J. Brunda. 1996. Antitumor and antimetastatic activity of interleukin-12. Curr. Top. Microbiol. Immunol. 213 (Pt 3): 65-83.  https://doi.org/10.1007/978-3-642-80071-9_5
  6. Nastala, C. L., H. D. Edington, T. G. McKinney, H. Tahara, M. A. Nalesnik, M. J. Brunda, M. K. Gately, S. F. Wolf, R. D. Schreiber, W. J. Storkus, and . 1994. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 153: 1697-1706.  https://doi.org/10.4049/jimmunol.153.4.1697
  7. Brunda, M. J., L. Luistro, R. R. Warrier, R. B. Wright, B. R. Hubbard, M. Murphy, S. F. Wolf, and M. K. Gately. 1993. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178: 1223-1230.  https://doi.org/10.1084/jem.178.4.1223
  8. Leonard, J. P., M. L. Sherman, G. L. Fisher, L. J. Buchanan, G. Larsen, M. B. Atkins, J. A. Sosman, J. P. Dutcher, N. J. Vogelzang, and J. L. Ryan. 1997. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90: 2541-2548. 
  9. Atkins, M. B., M. J. Robertson, M. Gordon, M. T. Lotze, M. DeCoste, J. S. DuBois, J. Ritz, A. B. Sandler, H. D. Edington, P. D. Garzone, J. W. Mier, C. M. Canning, L. Battiato, H. Tahara, and M. L. Sherman. 1997. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. 3: 409-417. 
  10. Car, B. D., V. M. Eng, J. M. Lipman, and T. D. Anderson. 1999. The toxicology of interleukin-12: a review. Toxicol. Pathol. 27: 58-63.  https://doi.org/10.1177/019262339902700112
  11. Mach, N., and G. Dranoff. 2000. Cytokine-secreting tumor cell vaccines. Curr. Opin. Immunol. 12: 571-575.  https://doi.org/10.1016/S0952-7915(00)00144-8
  12. Chang, C. J., K. F. Tai, S. Roffler, and L. H. Hwang. 2004. The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors. J. Immunol. 173: 6025-6032.  https://doi.org/10.4049/jimmunol.173.10.6025
  13. Ji, J., J. Li, L. M. Holmes, K. E. Burgin, X. Yu, T. E. Wagner, and Y. Wei. 2004. Synergistic anti-tumor effect of glycosylphosphatidylinositol-anchored IL-2 and IL-12. J. Gene Med. 6: 777-785.  https://doi.org/10.1002/jgm.547
  14. Tahara, H., and M. T. Lotze. 1995. Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther. 2: 96-106. 
  15. Kim, Y. S., C. H. Sonn, S. G. Paik, and A. L. Bothwell. 2000. Tumor cells expressing membrane-bound form of IL-4 induce antitumor immunity. Gene Ther. 7: 837-843.  https://doi.org/10.1038/sj.gt.3301175
  16. Chang, M. R., W. H. Lee, J. W. Choi, S. O. Park, S. G. Paik, and Y. S. Kim. 2005. Antitumor immunity induced by tumor cells engineered to express a membrane-bound form of IL-2. Exp. Mol. Med. 37: 240-249.  https://doi.org/10.1038/emm.2005.32
  17. Lim, H. Y., H. Y. Ju, H. Y. Chung, and Y. S. Kim. 2010. Antitumor effects of a tumor cell vaccine expressing a membrane-bound form of the IL-12 p35 subunit. Cancer Biol. Ther. 10: 336-343.  https://doi.org/10.4161/cbt.10.4.12310
  18. Lim, H., S. A. Do, S. M. Park, and Y. S. Kim. 2013. Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit stimulates antitumor immune responses dominated by CD8(+) T Cells. Immune Netw. 13: 63-69.  https://doi.org/10.4110/in.2013.13.2.63
  19. D'Andrea, A., M. Rengaraju, N. M. Valiante, J. Chehimi, M. Kubin, M. Aste, S. H. Chan, M. Kobayashi, D. Young, E. Nickbarg, and . 1992. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176: 1387-1398.  https://doi.org/10.1084/jem.176.5.1387
  20. Podlaski, F. J., V. B. Nanduri, J. D. Hulmes, Y. C. Pan, W. Levin, W. Danho, R. Chizzonite, M. K. Gately, and A. S. Stern. 1992. Molecular characterization of interleukin 12. Arch. Biochem. Biophys. 294: 230-237.  https://doi.org/10.1016/0003-9861(92)90162-P
  21. Pan, W. Y., C. H. Lo, C. C. Chen, P. Y. Wu, S. R. Roffler, S. K. Shyue, and M. H. Tao. 2012. Cancer immunotherapy using a membrane-bound interleukin-12 with B7-1 transmembrane and cytoplasmic domains. Mol. Ther. 20: 927-937.  https://doi.org/10.1038/mt.2012.10
  22. Lode, H. N., T. Dreier, R. Xiang, N. M. Varki, A. S. Kang, and R. A. Reisfeld. 1998. Gene therapy with a single chain interleukin 12 fusion protein induces T cell-dependent protective immunity in a syngeneic model of murine neuroblastoma. Proc. Natl. Acad. Sci. U. S. A. 95: 2475-2480.  https://doi.org/10.1073/pnas.95.5.2475
  23. Collison, L. W., C. J. Workman, T. T. Kuo, K. Boyd, Y. Wang, K. M. Vignali, R. Cross, D. Sehy, R. S. Blumberg, and D. A. Vignali. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566-569.  https://doi.org/10.1038/nature06306
  24. Wang, Z., J. Q. Liu, Z. Liu, R. Shen, G. Zhang, J. Xu, S. Basu, Y. Feng, and X. F. Bai. 2013. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. J. Immunol. 190: 2415-2423. https://doi.org/10.4049/jimmunol.1202535