DOI QR코드

DOI QR Code

연료전지용 술폰화 폴리아릴렌에테르술폰 랜덤공중합체 강화복합막의 제조 및 특성

Preparation and Characterization of Sulfonated Poly(Arylene Ether Sulfone) Random Copolymer Reinforced Membranes for Fuel Cells

  • 안주희 (단국대학교 융합기술대학 에너지공학과) ;
  • 이창현 (단국대학교 융합기술대학 에너지공학과)
  • Ahn, Juhee (Energy Engineering Department, Dankook University) ;
  • Lee, Chang Hyun (Energy Engineering Department, Dankook University)
  • 투고 : 2016.04.25
  • 심사 : 2016.04.26
  • 발행 : 2016.04.30

초록

술폰화 폴리아릴렌에테르술폰(SPAES) 랜덤 공중합체는 고분자 전해질 연료전지에 적용될 때 높은 수소이온전도도, 상대적으로 낮은 생산 단가 그리고 열화학적 저항성등과 같은 장점을 갖는다. 반면, SPAES 공중합체는 가혹한 구동 조건하에서 낮은 화학적 안정성과 치수 불안전성으로 인해 실제 연료전지 막에 직접적으로 적용하는데 어려움이 있다. 그에 타당한 해결책은 SPAES 공중합체를 상호 연결된 기공 구조와 높은 열화학적 강도를 가지는 지지체 필름(예 : 전기방사된 폴리이미드 지지체)에 함침시키는 것이다. 본 연구에서는 함침막 제조를 위한 이오노머로 빠른 이온 수송을 위해 높은 자유 체적을 유도하는 회전 그룹을 갖는 SPAES 공중합체를 선택하였다. 제작된 막의 실용가능성은 막 특성화를 통해 평가되었다.

Sulfonated poly (arylene ether sulfone) (SPAES) random copolymers have merits such as high proton conductivity, relatively low production cost, and thermochemical resistance when applied as polymer electrolyte membranes for fuel cells. However, it is difficult to directly employ SPAES copolymers into practical fuel cell membrane applications owing to their low chemical stability and dimensional instability under harsh operation conditions. A plausible solution is to impregnate SPAES copolymers into support films (e.g., electrospun polyimide support) with interconnected pore structures and high thermochemical toughness. In this study, a SPAES copolymer with a swivel group, which induces high free volume for fast ion transport, is chosen as ionomers to prepare pore-filling membranes (PFMs). The feasibility of the resulting membranes is evaluated via membrane characterizations.

키워드

참고문헌

  1. A. B. Stambouli and E. Traversa, "Fuel cells, an alternative to standard sources of energy", Renew. Sustain. Energy., 6, 297 (2002).
  2. S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, "Agingmechanisms and lifetime of PEFC and DMFC", J. Power Sources, 127, 127 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  3. S. Kundu, M. W. Fowler, L. C. Simon, and S. Grot, "Morphological features (defects) infuel cellmembrane electrode assemblies", J. Power Sources, 157, 650 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.027
  4. C. H. Lee, K. S. Lee, O. Lane, J. E. McGrath, Y. Chen, S. Wi, S. Y. Lee, and Y. M. Lee, "Solvent-assisted thermalannealing of disulfonated poly(arylene ether sulfone)random copolymers for lowhumidity polymer electrolyte membrane fuel cells", RSC Adv., 2, 1025 (2012). https://doi.org/10.1039/C1RA00681A
  5. F. Wang, M. A. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers : candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  6. M. J. Sumner, W. L. Harrison, R. M. Weyers, Y. S. Kim, J. E. McGrath, J. S. Riffle, A. Brink, and M. H. Brink, "Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles", J. Membr. Sci., 239, 199 (2004). https://doi.org/10.1016/j.memsci.2004.03.031
  7. Y. Li, F. Wang, J. Yang, D. Liu, A. Roy, S. Case, J. Lesko, and J. McGrath, "Synthesis and characterization of controlled molecular weight disulfonated poly(arylene ether sulfone) copolymers and their applications to proton exchange membranes", Polymer, 47, 4210 (2006). https://doi.org/10.1016/j.polymer.2006.03.003
  8. Y. Li, R. A. VanHouten, A. E. Brink, and J. E. McGrath, "Purity characterization of 3,30-disulfonated-4,40-dichlorodiphenyl sulfone(SDCDPS) monomer by UV-visspectroscopy", Polymer, 49, 3014 (2008). https://doi.org/10.1016/j.polymer.2008.04.043
  9. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E.Brink, M. H. Brink, and J. E. McGrath, "Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchangemembranes (PEM) in fuel cell applications", J. Appl. Polym. Sci., 100, 4595 (2006). https://doi.org/10.1002/app.22803
  10. G. H. Li, C. H. Lee, Y. M. Lee, and C. G. Cho, "Preparationof poly (vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications", Solid State Ionics, 177, 1083 (2006). https://doi.org/10.1016/j.ssi.2006.03.003
  11. J. Chen, L. S. Loo, and K. Wang, "A novel time lag method to measure the permeation of vapor-gas mixtures", J. Membr. Sep. Technol., 1, 94 (2012).
  12. T. Yamaguchi, F. Miyata, and S. Nakao, "Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
  13. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyteMembrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  14. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  15. R. Nohe, K. Ledjef, M. Bauer, and R. Mtilhaupt, "Partially sulfonated poly (arylene ether sulfone) - A versatile proton conducting membrane material formodern energy conversion technologies", J. Memb. Sci., 83, 211 (1993). https://doi.org/10.1016/0376-7388(93)85268-2
  16. J. S. Lee, N. D. Quan, J. M. Hwang, S. D. Lee, H. Kim, H. Lee, and H. S. Kim, "Polymer electrolyte membranes for fuel cells", J. Ind. Eng. Chem., 12, 175 (2006).
  17. T. Yamaguchi, H. Zhou, S. Nakazawa, and N. Hara, "An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells", Adv. Mater., 19, 592 (2007). https://doi.org/10.1002/adma.200601086
  18. S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyteMembranes(PEMs) for fuel cells", Membr. J., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  19. E. H. Kim, B. J. Chang, and J. H. Kim, "Preparation and characterization of partially fluorinated poly(arylene ether sulfone)/PTFE composite membranes for fuel cell", Membr. J., 22, 191 (2012).
  20. Y. S. Kim and B. S. Pivovar, "Moving beyond mass-based parameters for conductivity Analysis of sulfonated polymers", Annu. Rev. Chem. Biomol. Eng., 1, 123 (2010). https://doi.org/10.1146/annurev-chembioeng-073009-101309