DOI QR코드

DOI QR Code

CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation

  • 박아름이 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김성중 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 이평수 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 남승은 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박유인 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Park, Ahrumi (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong-Joong (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Pyung Soo (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Nam, Seung Eun (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, You In (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 투고 : 2016.04.11
  • 심사 : 2016.04.26
  • 발행 : 2016.04.30

초록

바이오 가스로부터 바이오 메탄을 생산하기 위해 물리흡수제 특성평가 및 $CO_2/CH_4$흡수 연구를 진행하였고, poly-propylene(PP) 중공사막 막접촉기에 적용해보았다. 물리흡수제 중 propylene carbonate (PC)는 PP 중공사막과 가장 높은 $58.3^{\circ}$ 접촉각을 보였고, 5 wt% PC를 물과 혼합할 경우 $90^{\circ}$ 이상의 접촉각이 관찰되었다. 또한 $CO_2$ 흡수실험에서 PC/물 혼합 흡수제는 물 흡수량(0.121 mmol/g) 보다 높은 0.148-0.157 mmol/g의 흡수량을 보이며, 막접촉기에 가장 적합한 물리흡수제로 선정되었다. PC/물 혼합 흡수제를 막접촉기에 적용 후 얻어진 $CO_2$ 제거율(98.0-97.8%)과 $CH_4$ 순도(98.5-98.3%)는 바이오 메탄으로서 매우 높은 가능성을 보여주었다. 하지만 PC/물 혼합 흡수제의 경우에는 물 흡수제와 비교하여 성능 변화가 매우 미비하였다. 이는 물보다 우수한 PC 흡수능과 함께 그에 따른 막접촉기 탈기 막 모듈 및 시스템 개선과 공급 유량 조절을 통해 $CH_4$ 손실 최소화 등 공정 최적화가 필요한 것으로 분석된다.

To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.

키워드

참고문헌

  1. Y. Yan, Z. Zhang, L. Zhang, Y. Chen, and Q. Tang, "Dynamic modeling of biogas upgrading in hollow fiber membrane contactors", Energ. Fuel, 28, 5745 (2014). https://doi.org/10.1021/ef501435q
  2. W. Rongwong, S. Boributh, S. Assabumrungrat, N. Laosiripojana, and R. Jiraratananon, "Simultaneous absorption of $CO_2$ and $H_2S$ from biogas by capillary membrane contactor", J. Membr. Sci., 392, 38 (2012).
  3. Z. Zhang, Y. Yan, L. Zhang, Y. Chen, J. Ran, G. Pu, and C. Qin, "Theoretical study on $CO_2$ absorption from biogas by membrane contactors: effect of operating parameters", Ind. Eng. Chem. Res., 53, 14075 (2014). https://doi.org/10.1021/ie502830k
  4. S. H. Choi, J. H. Kim, B. S. Kim, S. B. Lee, and Y. T. Lee, "$CO_2$ recovery from LNG-fired flue gas using a multi-staged pilot-scale membrane plant", Membr. J, 17, 197 (2007).
  5. A. McLeod, B. Jefferson, and E. J. McAdam, "Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading", Water Res., 47, 3688 (2013). https://doi.org/10.1016/j.watres.2013.04.032
  6. S. Vogler, A. Braasch, G. Buse, S. Hempel, J. Schneider, and M. Ulbricht, "Biogas conditioning using hollow fiber membrane contactors", Chemie Ingenieur Technik, 85, 1254 (2013). https://doi.org/10.1002/cite.201200235
  7. D. T. Coker, B. D. Freeman, and G. K. Fleming, "Modeling multicomponent gas separation using hollow-fiber membrane contactors", AIChE J., 44, 1289 (1998). https://doi.org/10.1002/aic.690440607
  8. R. Naim, A. F. Ismail, and A. Mansourizadeh, "Preparation of microporous PVDF hollow fiber membrane contactors for $CO_2$ stripping from diethanolamine solution", J. Membr. Sci., 392, 29 (2012).
  9. S. A. M. Marzouk, M. H. Al-Marzouqi, M. Teramoto, N. Abdullatif, and Z. M. Ismail, "Simultaneous removal of $CO_2$ and H2S from pressurized $CO_2$-$H_2S$-$CH_4$ gas mixture using hollow fiber membrane contactors", Sep. Purif. Technol., 86, 88 (2012). https://doi.org/10.1016/j.seppur.2011.10.024
  10. Y. Lv, X. Yu, S.-T. Tu, J. Yan, and E. Dahlquist, "Experimental studies on simultaneous removal of $CO_2$ and $SO_2$ in a polypropylene hollow fiber membrane contactor", Appl. Energy, 97, 283 (2012). https://doi.org/10.1016/j.apenergy.2012.01.034
  11. A. Mansourizadeh, "Experimental study of $CO_2$ absorption/stripping via PVDF hollow fiber membrane contactor", Chem. Eng. Res. Des., 90, 555 (2012). https://doi.org/10.1016/j.cherd.2011.08.017
  12. S.-P. Yan, M.-X. Fang, W.-F. Zhang, S.-Y. Wang, Z.-K. Xu, Z.-Y. Luo, and K.-F. Cen, "Experimental study on the separation of $CO_2$ from flue gas using hollow fiber membrane contactors without wetting", Fuel Process. Technol., 88, 501 (2007). https://doi.org/10.1016/j.fuproc.2006.12.007
  13. Y. Lv, X. Yu, J. Jia, S.-T. Tu, J. Yan, and E. Dahlquist, "Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption", Appl. Energy, 90, 167 (2012). https://doi.org/10.1016/j.apenergy.2010.12.038
  14. Y. Lv, X. Yu, S.-T. Tu, J. Yan, and E. Dahlquist, "Wetting of polypropylene hollow fiber membrane contactors", J. Membr. Sci., 362, 444 (2010). https://doi.org/10.1016/j.memsci.2010.06.067
  15. K. Simons, K. Nijmeijer, and M. Wessling, "Gas-liquid membrane contactors for $CO_2$ removal", J. Membr. Sci., 340, 214 (2009). https://doi.org/10.1016/j.memsci.2009.05.035
  16. M. Rahbari-Sisakht, A. F. Ismail, D. Rana, and T. Matsuura, "Carbon dioxide stripping from diethanolamine solution through porous surface modified PVDF hollow fiber membrane contactor", J. Membr. Sci., 427, 270 (2013). https://doi.org/10.1016/j.memsci.2012.09.060
  17. M. Rahbari-Sisakht, A. F. Ismail, and T. Matsuura, "Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for $CO_2$ absorption", Sep. Purif. Technol., 88, 99 (2012). https://doi.org/10.1016/j.seppur.2011.12.012
  18. Z. Wang, M. Fang, S. Yan, H. Yu, C.-C. Wei, and Z. Luo, "Optimization of blended amines for $CO_2$ absorption in a hollow-fiber membrane contactor", Ind. Eng. Chem. Res., 52, 12170 (2013). https://doi.org/10.1021/ie401676t
  19. V. Y. Dindore, D. W. F. Brilman, P. H. M. Feron, and G. F. Versteeg, "$CO_2$ absorption at elevated pressures using a hollow fiber membrane contactor", J. Membr. Sci., 235, 99 (2004). https://doi.org/10.1016/j.memsci.2003.12.029
  20. A. Mansourizadeh and A. F. Ismail, "$CO_2$ stripping from water through porous PVDF hollow fiber membrane contactor", Desalination, 273, 386 (2011). https://doi.org/10.1016/j.desal.2011.01.055
  21. S. Boributh, S. Assabumrungrat, N. Laosiripojana, and R. Jiraratananon, "A modeling study on the effects of membrane characteristics and operating parameters on physical absorption of $CO_2$ by hollow fiber membrane contactor", J. Membr. Sci., 380, 21 (2011). https://doi.org/10.1016/j.memsci.2011.06.029
  22. M. S. Shannon, J. M. Tedstone, S. P. O. Danielsen, and J. E. Bara, "Evaluation of alkylimidazoles as physical solvents for $CO_2$/$CH_4$ separation", Ind. Eng. Chem. Res., 51, 515 (2011).
  23. S. Atchariyawut, R. Jiraratananon, and R. Wang, "Separation of $CO_2$ from $CH_4$ by using gas-liquid membrane contacting process", J. Membr. Sci., 304, 163 (2007). https://doi.org/10.1016/j.memsci.2007.07.030
  24. Y. J. Lee, I. H. Song, H. S. Jeon, H. S. Ahn, Y. T. Lee, and H. K. Lee, "Absorptive separation of sulfur dioxide using flat membrane contactor", Membr. J., 16, 196 (2006).
  25. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membr. J., 20, 267 (2010).
  26. A. K. Covington, "Physical chemistry of organic solvent systems", pp. 4-6, Springer Science & Business Media, New castle (1973).
  27. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek, and G. F. Versteeg, "Membrane-Solvent selection for $CO_2$ removal using membrane gas-Liquid contactors", Sep. Purif. Technol., 40, 133 (2004). https://doi.org/10.1016/j.seppur.2004.01.014
  28. J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and L. Santos, "Observation of dipole-dipole interaction in a degenerate quantum gas", Phys. Rev. Lett., 95, 150406 (2005). https://doi.org/10.1103/PhysRevLett.95.150406