DOI QR코드

DOI QR Code

Enhanced Prediction Algorithm for Near-lossless Image Compression with Low Complexity and Low Latency

  • Received : 2016.03.07
  • Accepted : 2016.03.16
  • Published : 2016.04.30

Abstract

This paper presents new prediction methods to improve compression performance of the so-called near-lossless RGB-domain image coder, which is designed to effectively decrease the memory bandwidth of a system-on-chip (SoC) for image processing. First, variable block size (VBS)-based intra prediction is employed to eliminate spatial redundancy for the green (G) component of an input image on a pixel-line basis. Second, inter-color prediction (ICP) using spectral correlation is performed to predict the R and B components from the previously reconstructed G-component image. Experimental results show that the proposed algorithm improves coding efficiency by up to 30% compared with an existing algorithm for natural images, and improves coding efficiency with low computational cost by about 50% for computer graphics (CG) images.

Keywords

References

  1. Sugawara, M., Kanazawa, M., Mitani, K., Shimamoto, H., Yamashita, T., and Okano, F.: "Ultrahigh-definition video system with 4000 scanning lines", SMPTE Motion Imaging Journal, 2003, 112, (10/11), pp. 339-346. https://doi.org/10.5594/J16304
  2. Sugawara, M., Masaoka, K., Emoto, M., Matsuo, Y., and Nojiri, Y.: "Research on human factors in ultrahigh-definition television (UHDTV) to determine its specifications", SMPTE Motion Imaging Journal, 2008, 117, (3), pp. 23-29. https://doi.org/10.5594/J15117
  3. Chrysafis C., and Ortega, A., "Line-based, reduced memory, wavelet image compression", IEEE Trans. Image Processing, 2000, 9, (3), pp. 378-389. https://doi.org/10.1109/83.826776
  4. Ordentlich, E., Taubman1, D., Weinberger M., and Seroussi, G.: "Memory efficient scalable line-based image coding", Proc. IEEE Data Compression Conf., 1999, pp. 218-227.
  5. Memon, N., and Wu, X.: "Recent developments in context-based predictive techniques for lossless image compression", Comput. J., 1997, 40, (2/3), pp. 127-136. https://doi.org/10.1093/comjnl/40.2_and_3.127
  6. Weinberger, M. J., Seroussi G., and Sapiro, G.: "The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS", IEEE Trans. Image Processing, 2000, 9, (8), pp. 1309-1324. https://doi.org/10.1109/83.855427
  7. ISO/IEC: "Information technology - lossless and near-lossless compression of continuous- tone still images-baseline", ITU-T Recommendation T.87, 14495-1, 1998.
  8. Wu, X., and Memon, N.: "Context-based, adaptive, lossless image coding", IEEE Trans. Communications, 1997, 45, (4), pp. 437-444. https://doi.org/10.1109/26.585919
  9. Avramovic, A., and Reljin, B.: "Gradient edge detection predictor for image lossless compression", Proceedings of ELMAR, pp. 131-134, Sep. 2010.
  10. Kim, J., and Kyung, C. M.: "A lossless embedded compression using significant bit truncation for HD video coding", IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (6), pp. 848-860. https://doi.org/10.1109/TCSVT.2010.2045923
  11. Wige, E., Yammine, G., Amon, P., Hutter, A., and Kaup, A.: vPixel-based averaging predictor for HEVC lossless coding", Proc. ICIP, pp. 1806-1810, Sep. 2013.
  12. Skodras, A., Christopoulos, C., and Ebrahimi, T.: "The JPEG 2000 still image compression standard", IEEE Signal Processing Magazine, 2001, 18, (5), pp. 36-58. https://doi.org/10.1109/79.952804
  13. Lee, Y. G., Song, B. C., Kim, N. H., Kim, T. H., and Joo, W. H.: "Low-complexity near-lossless image coder for efficient bus traffic in very large size multimedia SoC", Proc. ICIP, pp. 2329-2332, Nov. 2009.
  14. Lee, Y. G., and Song, B. C.: "An intra-frame rate control algorithm for ultralow delay H.264/advanced video coding (AVC)", IEEE Trans. Circuits Syst. Video Technol., 2009, 19, pp. 747-752. https://doi.org/10.1109/TCSVT.2009.2017413
  15. Wiegand, T., Sullivan, G. J., Bjontegaard, G., and Luthra, A.: "Overview of the H. 264/AVC video coding standard", IEEE Trans. Circuits Syst. Video Technol., 2003, 13, (7), pp. 560-576. https://doi.org/10.1109/TCSVT.2003.815165
  16. Sullivan, G. J., Ohm, J. R., Han, W. J., and Wiegand, T.: "Overview of the high efficiency video coding (HEVC) standard", IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 1649-1668. https://doi.org/10.1109/TCSVT.2012.2221191
  17. Starosolski, R.: "New simple and efficient color space transformations for lossless image compression", Journal of Visual Commun. Image Represent., 2014, 25, (5), pp. 1056-63. https://doi.org/10.1016/j.jvcir.2014.03.003
  18. Strutz, T.: "Multiplierless reversible colour transforms and their automatic selection for image data compression", IEEE Trans. Circuits Syst. Video Technol., 2013, 23, (7), pp. 1249-1259. https://doi.org/10.1109/TCSVT.2013.2242612
  19. Song, B. C., Lee, Y. G., and Kim, N. H.: "Block adaptive inter-color compensation algorithm for RGB 4:4:4 video coding", IEEE Trans. Circuits Syst. Video Technol., 2008, 18, pp. 1447-1451. https://doi.org/10.1109/TCSVT.2008.2002827
  20. ISO/IEC IS 14495-2: Information technology-Lossless and near-lossless compression of continuous-tone still images: Extensions. 2003.