DOI QR코드

DOI QR Code

Effect of Biodegradable Mulch Film on Soil Microbial Community

  • Moon, Jin-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Song, Jae-Ki (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Shin, Jung-Ho (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Cho, Yong-Cho (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Bae, Jin-Woo (Crop Production Technology Research Division, NICS, RDA) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kang, Hang-Won (Crop Production Technology Research Division, NICS, RDA) ;
  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services)
  • Received : 2016.03.17
  • Accepted : 2016.04.25
  • Published : 2016.04.30

Abstract

The biodegradable film application can escape from plastic environmental pollution. This experiments studied the effect of biodegradable mulch film on the soil microbial community using fatty acid methyl ester method in soybean production field. The soil $NO_3$-N content in polyethylene mulch film (PE) soil was significantly higher than biodegradable mulch film soil (p < 0.05). The soil microbial community of Gram negative bacteria showed significantly higher in biodegradable mulch film soil than PE mulch film soil (p < 0.05). In addition, biodegradable mulch film soil had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of PE mulch film soil (p < 0.05), indicating that microbial stress decreased. The ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ should be considered as a potential responsible factor for the obvious differentiation that was observed between the biodegradable mulch film soil and PE mulch film soil in a upland field. The results of this experimentation show the potential of using biodegradable mulch film in place of PE.

Keywords

References

  1. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  2. Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. https://doi.org/10.1016/j.soilbio.2005.11.011
  3. Costa, R., A. Saraiva, L. Carvalho, and E. Duarte. 2014. The use of biodegradable mulch films on strawberry crop in Portugal. Scientia Horticulturae. 173:65-70. https://doi.org/10.1016/j.scienta.2014.04.020
  4. Cowan, J.S., D.A. Inglis, and C.A. Miles. 2013. Deterioration of three potentially biodegradable plastic mulches before and after soil incorporation in a broccoli field production system in northwestern Washington. HortTechnology. 23(6): 849-858.
  5. Davinic, M., L.J. Fultz, V. Acosta-Martinez, F.J. Calderon, S.B. Cox, S.E. Dowd, V.G. Allen, J.C. Zak, and J. Moore-Kucera. 2012. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biology and Biochemistry. 46:63-72. https://doi.org/10.1016/j.soilbio.2011.11.012
  6. Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
  7. Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
  8. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.
  9. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  10. Jones, R.T., M.S. Robeson, C.L. Lauber, M. Hamady, R. Knight, and N. Fierer. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442-453. https://doi.org/10.1038/ismej.2008.127
  11. Jung, P.K., K.S. Lee, M.H Ko, K.T. Um, and H.S. Ha. 1985. Effects of mulching practices on soil temperature and soil physical properties. J. Korean Soc. Soil Sci. Fert. 18(4): 366-372.
  12. Kasirajan, S. and M. Ngouajio. 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agron. Sustain. Dev. (2012) 32:501-529. https://doi.org/10.1007/s13593-011-0068-3
  13. Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
  14. Kim E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227. https://doi.org/10.7745/KJSSF.2011.44.2.221
  15. Kim, M.K., Y.S. Ok, J.Y. Heo, S.L. Choi, S.D. Lee, H.Y. Shin, J.H. Kim, H.R. Kim, and Y.H. Lee. 2014. Analysis of soil microbial communities formed by different upland fields in Gyeongnam Province. Korean J. Soil Sci. Fert. 47:100-106. https://doi.org/10.7745/KJSSF.2014.47.2.100
  16. Kim, M.K., Y.K. Sonn, H.Y. Weon, J.Y. Heo, J.S. Jeong, Y.J. Choi, S.D. Lee, H.Y. Shin, Y.S. Ok, and Y.H. Lee. 2015. Impacts of soil texture on microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 48(2):81-86. https://doi.org/10.7745/KJSSF.2015.48.2.081
  17. Kim, W.H. and B.H. Hong. 1986. Effects of mulching materials on physical properties of soil and grain yield of sesame. Korean J. Crop Sci. 31(3):260-269.
  18. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  19. Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. https://doi.org/10.3839/jksabc.2011.067
  20. Lee, Y.H. and S.T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:492-497. https://doi.org/10.7745/KJSSF.2011.44.3.492
  21. Lee, Y.H. and S.K. Ha. 2011a. Impacts of chemical properties on microbial population from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(2):242-247. https://doi.org/10.7745/KJSSF.2011.44.2.242
  22. Lee, Y.H. and S.K. Ha. 2011b. Impacts of topography on microbial community from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):485-491. https://doi.org/10.7745/KJSSF.2011.44.3.485
  23. Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
  24. Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Biol. 46:312-318. https://doi.org/10.1016/j.ejsobi.2010.06.001
  25. Miles, C., R. Wallace, A. Wszelaki, J. Martin, J. Cowan, T. Walters, and D. Inglis. 2012. Durability of potentially biodegradable alternatives to plastic mulch in three tomato production regions. HortScience 47(9):1270-1277.
  26. NIAST (National Institute of Agricultural Science and Technology). 2010. Methods of soil chemical analysis. Suwon, Korea.
  27. Rhoads, F.M., C.S. Gardner, O.S. Mbuya, G.L. Queeley, and H.M. Edwards. 1999. Tomato fertilization, ground cover, and soil nitrate nitrogen movement. Proc. Fla. State Hort. Soc. 112:315-319.
  28. Romic, D., M. Romic, J. Borosic, and M. Poljak. 2003. Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation. Agr. Water Manage. 60:87-97. https://doi.org/10.1016/S0378-3774(02)00168-3
  29. Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. https://doi.org/10.1023/A:1004379404220
  30. Park, J.H., M.K. Kim, B.J. Lee, H.R. Kim, Y.H. Lee, and Y.S. Cho. 2014. Diversity of soil microbial communities formed by different light penetrations in forests. Korean J. Soil Sci. Fert. 47:496-499. https://doi.org/10.7745/KJSSF.2014.47.6.496
  31. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  32. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  33. Yang, S.R. and C.H. Wu. 1999. Degradable plastic films for agricultural applications in Taiwan. Macromol. Symp. 144(1): 101-112.
  34. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35: 275-294. https://doi.org/10.1016/S0045-6535(97)00155-0