ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or kr

mEo] R&DA A2 2271 23

Describing Activities to Verify Artifacts(Documents and Program) in
Software R&D

o =] ILTW
= et &5

ojrpze! o & ' o 4 o i A"
Amarmend Eun-Chul Lee Jung-Won Lee Byeongjeong Lee
o ok
R =
YA O T LTEY 0] RAD ZEA BN Z2IY T B4 AEEe] AYHT o|H T LAZES Y R&D AEEES T
TR 2FE 4 vk A WA ER/E A A4 AN, AFNEAAA YA, AFAAARIA, AF RE T AZE o] AF
AEEEC] 2T I UE ERE AZES o] QAN WAA, AZEg o] AA HAA, AZES o] HAE AYA, 2R
A FEo} 2 AZE AL AEEE| T Z2AE] g WIS NG wf TR FEF HAESY B4 AEES AS
ste Aol Foatth g A FA L N AZE Ateld] ¢, A 5o FAE Fdsfor vk 13 ASH HAEE ZE

AE Aot AFAEe] Z2AEE st $e SulEA MYt ke S Frh AHER B Ao AZES]
R&DNAM A EE EA9 Z2IH S AFse ZZALE At 2 Z2AAs B4 AEES FESY 223y I8 H
Ests 8502 FAHY 1o, Esenced Agste] AojHth I8 B ApoA At ZEA LY 84S A ATE
23 Holt)

= FAo AZE S Ay, A5 &5, Esence, AHEE HAH

ABSTRACT

In software R&D artifacts including documents and program code are produced. There are two kinds of software R&D artifacts:
Research arfifacts and development artifacts. Research artfifacts include software R&D planning document, annual report, final report,
research nofe and so on. Software development artifacts include software requirements, software design description, testing plan, fest
report, and program code. It is important to verify the documents and to test code to check the direction of the R&D. Moreover,
we should check relationships as such completeness and consistency between research and development artifacts. The verification and
testing help project manager and researchers understand what they do during soffware projects. Therefore, in this study, we present
a process o verify documents and program in soffware R & D. In the process we check documents produced in sofftware R&D and
test program code. We describe the process by using Essence elements including alpha, activity, and competency. We present a case
study to show the effectiveness of the process.

= keyword : Software R&D, Validation Activities, Essence, Artifact Tesfing

1. INTRODUCTION Researchers and developers produce program code and
documents in software R&D. They examine documents and

code to monitor project progress and quality during software

Dept. of Computer Science, University of Seoul, Seoul, 20504, Korea. project where they verify both the code and documents. The

? Dept. of Department of Electrical and Computer Engineering, Ajou

University, Suwon, 16499, Korea. purpose of this verification is to make contribution to software

’ Corresponding author (bjlee @uos.ac.kr) testing activity. Artifacts of software R&D project are divided

2[126 ;2:2?1 3812]]0"6“ 2015, Reviewed 21 January 2016, Acoepted into two groups. One is software research documents including

Y This research was supported by Next-Generation Information R&D planning document, annual report, final report, research

GOH]P“@% Development Program through the Naﬁ"“al RWCh note and so on. The other includes software development

fgrundg?oiugfmm;m (ngFd?gO?ZMghagggs&ymif :%en%e}: artifacts including requirement specification, design description,
Seoul Creative Human Development Program funded by Seoul test plan, test report, program code and so on.

Metropolitan Government (No.CAC15106).

v¢ A preliminary version of this paper was presented at APICIST 2015 .
and was selected as an outstanding paper. and test program code to confirm the direction of the R&D.

Researchers and developers should check the documents

Journal of Internet Computing and Services(JICS) 2016. April: 17(2): 39-47 39
http://dx.doi.org/10.7472/jksii.2016.17.2.39

SZEY 0| RADOIM LES(EAMRL Z20H) ASS 2IF

0ol
Lok

=
o

r

Moreover, they should investigate relationships as such
completeness and consistency between research and
development artifacts. Thus, they have to be aware of how
the verification goes. In this paper, we describe a test process
with activities to verify artifacts in software R&D project.

We use Essence framework by Object Management Group
for our process. Essence kernel has 6 alphas and every alpha
changes its status in case of activities of the alpha had fulfilled.
We use high-level test planning, detailed-level test planning,
unit-level test planning, unit testing, detailed-level testing and
high-level testing as alphas in our process.

The contribution of this paper is that we introduce a test
process that conforms to software R&D projects and both
software product and documents are able to be tested within
the process. Specifications are essential for successful software
testing, but other similar studies do not consider correctness
of the related documents and do not include any activities on
verifying specifications.

Remainder of the paper is structured as follows: Section
2 provides some basic information on relative technologies,
Section 3 contains a brief content of related works, Section
4 presents a test process we are introducing, Section 5 describes
the association of our process and Essence model and Section
6 illustrates conclusion of this paper and how our study will
continue in future.

2. RELATED WORK

2.1 ESSENCE

Essence [1-3] is a framework that presents the state of
software development progress and provides the common
ground for those diverse software engineering methods and
theories. Essence mainly consists of four parts such as
Methods, Practices, The Kernel and The Language. Method
is a set of Practices and it’s not just a description of what
is expected to be done, but a description of what is actually
done. A practice is a repeatable approach to doing something
with a specific objective in mind. The Essence Language is
the domain-specific language to define methods, practices and
kernels. Kernel contains Alphas, Activity Space and
Competencies. There are seven alphas in Essence Kernel that
are Stakeholders, Opportunity, Requirements, Software

System, Team, Way of Working and Work and each alpha
changes its state during the progress.

Seven alphas of essence kemel are grouped into three areas
of concern. Firstly, Opportunity and Stakeholder alphas are
included in Customer area. Solution area contains alphas that
Requirement and Software System. Lastly, Work, Team and
Way of Working alphas are included in Endeavour area. Every
alpha has its own states and those states shows the progress
of fulfillment of project development. Alphas contain the things
to do or Activity Spaces which need to be done in order to
change to next state of alpha. We used essence kemel for test
process model in our study and we created whole other new
alphas which are essential for our model. There is also
“Competencies” or “Abilities Needed” in the kemel, it
determines the competencies in each area, for example,
Analysis, Development and Testing are the needed abilities
of Solution area. Those competencies have five levels that
1-Assists, 2-Applies, 3- Masters, 4-Adapts and S-Innovates.

2.2 TMM(i)

TMMi is test maturity reference model [4-6] which is
developed by TMMi foundation. Its structure is same as
Capability Maturity Model (CMM) and concept was firstly
introduced in 1996. TMMi was made to improve the testing
effectiveness and made it possible for organizations that they
determine their fulfillment and effectiveness of their testing.
A quality assurance framework is included in TMMi model
and it is used for connection that provides information on
concept and ideas between workers in large organization.

As shown in Figure 1, TMMi has five maturity levels which
are Initial, Managed Defined, Measured and Optimization.
Each level includes process areas which need to be done in
order to advance next level. Process areas contain two kinds
of practices which are Specific and Generic practices and both
the lowest unit of the TMMi model. Specific practice is
included only in one particular process area. Generic process
is a process which is connected to two or more process areas
so it means several process areas’ fulfillment is dependent to
one Generic Practice. There are also Specific and Generic
goals which indicate the purpose of specific and generic
practices and need to be satisfied by those practices when they
are done.

40

2016. 4

SZEY 0| RADOIM LES(EAMRL Z20H) ASS 2IF

0ol
Lok

=
o

r

(§) Optimization
Defect Prevention

Test Process Optimization
Quality Control

(3) Defined
Test Crganization
T Pr

(2) Managed
Test Policy and Strategy
Test Planning

Test Monitering and Control
Test Design and Execution
Test Environment

(Figure 1) TMMi LEVELS. (7)
2.3 1SO 29119

ISO 29119 is a standard for software testing standardized
by International Organization for Standardization in 2013. This
standard is consists of 5 parts such as Concepts and Definitions,
Test Processes, Test Documentation, Test Techniques and
Keyword Driven Testing. This standard was implemented in
order to draw the baseline for the testing discipline and settle
the conflict in current definition and processes. In our study
we use part 2 of the standard, test process which uses risk-based
approach. Firstly, the part 2 of ISO 29119 also includes Static
Test Process as fourth part. However, in recent update Static
Test Process part was removed and the part 2 has become
three layered model. The layers with their activities are shown
in Figure 2.

Organizational
Test Process

Test Management Processes

Test m .Im[& Test
Planning Dnllonng (ompletl{ln
Contral
Dynamic Test Processes
Test Test
Test Design & Environment Test e
: i ncident
Implementation Set-up & Execution R :
Mal _ leporting
aintenance

(Figure 2) LAYERS AND ACTIVITIES OF ISO
29119-2

The Organizational Test Process layer is divided into two
parts: Test policy and Test Strategy parts of Software Testing.
Test Management Process layer consists of three activities
which are Test Planning, Test Monitoring & Control and Test
Completion. In Test Planning activity, the test planning
document is generated and sent to Dynamic Test Process layer.
While Test Monitoring & Control activity checks the progress
of test process by test measures that sent from Dynamic Test
Process.

From Organizational Test Process layer Organizational Test
Strategy is passed to Test Management Process layer and Test
Management Process layer feedback to the Organizational Test
Process layer. Thus, Test Management Process layer produces
Level Test Plans based on Test Strategy and passes it to the
Dynamic Test Process layer with Control Directives. Lastly,
Dynamic Test Process layer passes the test measures to Test
Management Process layer after testing activities are finished
on all levels.

We utilize a study [8] about Test Maturity Models while
we study software testing field. TMM is a test maturity model
developed by TMMi foundation for the purpose of determining
testing quality by organization itself. We considered TMMi
has some similar prospects and so we researched related papers
to TMMi. Since 2007, Erik van Veenendaal published number
of papers on test process improvement and introduced TMMi
as the reference model.

In 2013 Pan-Wei Hg et al. [9] raised a problem by his
paper about how the student’s knowledge that learned in
college differs from employee’s requirement. He mentioned
in his paper that the lack of framework makes it hard to
understand and compare the college education system and
industry needs. Pan-Wei Hg suggested Essence can be bridge
among the gap between industry, research and education.

B. Elvesater et al. [10] illustrates Essence Kernel and
Language and how they we used in the study. This study shows
key language concept difference between SPEM and Essence
- which both OMG projects. The comparison is based in
REMICS project and result showed in spite of both developed
by same author they have some key differences in method.
From this paper we have obtained some useful knowledge
about Essence 1.0 and SPEM 2.0 and gap between them.

D. J. Han et al. [11] is a study which describes guidelines

el

b= QIE{Hl HESE| (172423)

41

SZEY 0| RADOIM LES(EAMRL Z20H) ASS 2IF

0ol
Lok

=
o

r

for implementing Capability Mature Model Integration
(CMMI) based configuration management in Extreme
Programming (XP). Therefore, this paper provides basic
knowledge on CMMI and Extreme Programming and
configuration management (CM) practices of CMMI were
redefined in order customize them for XP. This study was
useful for our research because we are developing a
TMMi-based software test process where TMMi and CMMI
are conceptually similar.

K. S. Lee et al. [12] proposed a software development
process that based on Rational Unified Process (RUP). The
proposed process is a tailored version of RUP for Korean Core
Instrumentation System. They evaluated the result by with
typical waterfall lifecycle model and RUP.

In S. W. Shin et al. [13], a number of improvement models
were used such as SPICE(Software Process Improvement and
Capability dEtermination) and CMMI which is can be used
for improving quality of mobile embedded software. In this
paper, XP is also used because it has the iteration development
feature. Thus, authors proposed a XP-based software process
improvement framework that can achieve CMMI level 2 or 3.

J. A. Kim [17] proposed a quality assessment framework
for evaluating medical software R&D Project. Authors
identified the critical features of medical device software such
as safety, standardization and continuing change. Those
features are used for evaluation of medical software R&D
project. However, the study limited to focus on only the
medical field of R&D.

3. DEFINING TEST PROCESS IN
SOFTWARE R&D PROJECT

3.1 TEST PROCESS FOR SOFTWARE
RESEARCH DOCUMENTS

Test Process for R&D Project tests document artifacts such
as planning document, annual report and final report which
are sequentially made from testing activities. At planning level,
researcher creates planning document which includes content
like overall plan, final research goal and annual research goal.
Thus, it is verified by tester and result will be informed to

researcher.

f/ Periodical \ (] Non-periodical\

Planning . Document Document
Document Test T tee L I (W'
S Document
Annual Report ;
Test
Annual Report

a4

=)

(Figure 3) TEST PROCESS FOR R&D PROJECT

Research Note

According to contents in Planning document submitted,
research progress and next year plan are verified by researcher
submits annual report every year. Finally, the end of research,
research result is verified by contents of final report.

R&D Test Process documents are classified into periodical
and non-periodical documents as showed in Figure 3.

In Figure 3, the documents which are used for software
testing are in bold frame. Planning document and Final report
are non-periodical documents that both are tested once in
project lifetime. Annual Report is tested every year because
it is documented every year needed to be tested periodically.

As shown in Figure 3, the periodical documents like
monthly/weekly report and also non-periodical documents such
as meeting minutes, research note are generated through R&D
process but not used for software testing. The documents that
are not used in software testing like Monthly/weekly report,
meeting minute and research note are written in free form and

simple example is shown in Figure 4.

[Manager | Date | Title | Content [Time |

. |Desianing a Test | /0 Definition for Gontest-base

T

Framework Test podile

3 3 1851 foesi; of the frmesuk
srehltectire Leing defieed level
ind sdide

]

(Figure 4) EXAMPLE OF RESEARCH NOTE

42

2016. 4

LZEQ0f R&DOIAM MES(EAML Z20) HAES 2let €3
Research documents not used for testing, shown in Figure ast Pl o
4, are helpful for monitoring project progress because they are PO, P 1 | [P NI
i : : . Test Planning iy Testing | Software Test
produced constantly during the progression of project unlike ;| Reiroment ; Plan
. qe . Specification f
non-periodical documents such as planning document, annual system Test N | 1|] system l
Flanning " Testing e / Software
report and final report. o =| Product
5. : Integration ‘I] Integration : Specification
Therefore, in this paper, the test process for software R&D Test Planning 2 | 1 Software Tecting '
. . P . esign
includes testing activities which are based on those Description v i
Lo . . Software Unit L ! 1| Software Unit SW Product
non-periodical documents such as meeting minutes, research Test Planning Testing

note and weekly report submitted constantly. Usage of periodical
documents in testing makes it possible to monitor project
progress effectively. Therefore, they are used as additional
information for accurate testing in each level of test process.

3.2 TEST PROCESS FOR SOFTWARE
DEVELOPMENT

Software development is required to be tested often for the
reason that invisibility feature of software [14]. Therefore,
software development test process is based on common model
V&V (Verification and Validation). The verification level of
V&V test process consists of acceptance test planning, system
test planning, integration test planning and software unit test
planning. Thus, validation level consists of acceptance testing,
system testing, integration testing and software unit testing.

Acceptance N\ e | Acceptance

Test Planning Testing

System Test N N System

Planning Testing

Integration \...... » Integration
Test Planning Testing
Software Unit N\ __| Software Unit Validation
Test Planning Testing

(Figure 5) SOFTWARE V&V PROCESS

Verification

As pointed by arrow in Figure 5, Acceptance test plan is
associated with acceptance testing activity and system test plan
is associated with system testing activity respectively and so
on. If test plan and test activities are structured like this pattern
in the process we introduced, complex software artifacts can
be tested more precisely.

(Figure 6) ARTIFACTS IN SOFTWARE V&V
PROCESS

As shown in Figure 6, only source code items are not
enough for software development testing also various
document artifacts are required. There are development
documents like Software Design Description (SDD) and
Software Requirement Specification (SRS) which associated
to both test planning and test activities. There are also SW
Product that provides source code which is considered as
software related artifact and document artifacts such as
Software Test Plan (STP) and Software Product Specification
(SPS).

Figure 6 shows dependencies between software activities
and software artifacts. SRS contains user requirements
analyzed by researcher and it can be used in system testing
and acceptance testing. SDD includes items like module design
and software structure. Thus, SDD is used in integration test
plan level and also used in unit testing and integration testing
levels. The artifacts that SPS, STP and SW product are used
in all validation activities.

We are introducing a test process that contains both V&V
planning and testing activity because we set software R&D
as our target. This test process utilizes software development
documents such as SRS, SDD and SPS.

3.3 TEST PROCESS FOR SOFTWARE
R&D PROJECT

We define the process that tests not only software research
artifacts but also software development artifacts by analyzing
both software R&D test process and software test process. The
software R&D test process is based on TMMi model and ISO
29119-2 standard.

ror
Hl
ro
Ll
o
0!
HT
o
tolr

| (17723)

43

2ZEQ|0f R&DOIA LHEE

(BMet Z20) 452 2t

F

rot
Lok

=
o

The activities of software R&D test process levels are
defined by activities of R&D process and software test process.
Figure 7 shows activities of high level test plan, detailed level
test plan and unit level test plan as test planning activities.
Testing activities such as high level testing, detailed level

testing and unit level testing are also shown.

Test Planning Acceptance | System Test y th Level Test
Document Test Planning Plane '\g Pl.ll!

- e Intagration ntegration

=l Test Annual Test Planning Testing
Raport " =~
eI Software Unit ™, Software Unit ™

Test Planning Testing

I Unit-Level Test
Test Finad y System \ A:;npmu \
Report Testing 'es',"'g ""9" Level Test

(Figure 7) DEFINITION OF TEST PROCESS
ACTIVITIES

System test plan and acceptance test plan for testing R&D
planning document are defined as High level test plan. The
annual report test plan and integration test plan are defined as
detailed-level test plan. The research note test plan and unit
test plan defined as unit-level test plan. High-level testing
examines the final report and software system. Detailed-level
testing examines the annual report and software integration. And
unit-level testing confirms research note and software module.

High-Level Test
Plan
Detailed-Level Detailed
Test Flan Lewved Test
R&D L

. Documems .

Devslopment

documaents
and Software unit- Level
- Test
High-Leved
Test

(Figure 8) SOFTWARE R&D TEST PROCESS

Unit-Level Test
Plan

Structure and cycle of the proposed process is shown in
Figure 8. The test process needs to be performed the high-level
testing activity with project management related documents and

software related documents. After high-level testing activity
is finished, the detailed level test plan, unit level test plan,
detailed level testing and unit level testing activities will be
performed repeatedly. In last stage of process, comprehensive
testing will be performed in High-level testing activity.

(Table 1) ACTIVITIES AND ARTIFACTS

Software R&D
Test Activity

Artifacts(input — output)

R&D Project Plan with Template, Software
High-Level Test | Requirement Specification(SRS)

Planning —> Software Lifecycle Test Plan (for Project Plan
and System Testing)

Project Annual Report Template, Software
Detailed-Level | Design Description(SDD)

Test Planning | — Software Lifecycle Test Plan (for Annual
Report Items and Integration Testing)

Project Research Note Template, SDD
— Software Lifecycle Test Plan (for Research
Note and Unit Testing)

Software Lifecycle Test Plan, Research Note,
Program Code

— Software Lifecycle Test Report (for Research
Note and Unit Testing)

Software Lifecycle Test Plan, Project Annual
Detailed-Level | Report, Program Code

Test — Software Lifecycle Test Report (for Annual
Report and Integration Testing)

Software Lifecycle Test Plan, Project Final Report,
Program Code

— Software Lifecycle Test Report (for Final
Report and System Testing)

Unit-Level Test
Planning

Unit-Level Test

High-Level Test

Input documents are defined for each by activities of
software R&D test process. During the planning activities of
the process is being performed, the Software Life-Cycle Test
Plan(SLTP) is generated and used in the next activities such
as high-level test, detailed-level test and unit-level test.

After test activities performed and concluded as instructed
in SLTP, the test result is shown through Software Life-Cycle
Test Report (SLTR). Table 1 shows all input and output

documents of process activities.

3.4 DOCUMENTATION OF TEST PROCESS

The proposed test process has test planning document and
test result document, SLTP and SLTR [15]. SLTP includes

44

2016. 4

SZEY 0| RADOIM LES(EAMRL Z20H) ASS 2IF

Ol
Lok

=
o

r

contents that related to planning of software testing such as
test strategy, risk approach, test environment requirement, test
case and scenario etc.

SLTR contains test result of both software product and
document artifacts. The test results of three levels are shown
separately. For example, software test result of High-level
testing is shows by 6 metrics that defined in Software Quality
standard ISO9126. The quality software product is evaluated
by its functionality, reliability, usability, efficiency,
maintainability and portability. On the other hand, document
artifacts are evaluated by three metrics, Traceability,
Completeness and Consistency.

4. CASE STUDY: MODELING TEST
PROCESS USING ESSENCE

In software process modeling field, there are two
well-known software process modeling languages, SPEM and
Essence, both created by Object Management Group. We used
a comparative study [10] in order to make a choice for which
one best suits our process. In the comparative study, SPEM
language architecture has some shortage in process enactment.
On the other hand, Essence contains some better concept and
structure for supporting enactment.

=i

High-Level Test Item check

Test Plan Test Plan

Deaed-Leve
Test Plan [W

Unit-Level <} \J
Test Plan

Unit-Level

Test

| Test ltem check

Test Completion

Detailed-Level
Test Test Pass
High-Level [_Test Completion_|

Test Test Pass

(Figure 9) TEST PROCESS MODEL IN ESSENCE

Therefore, we choose FEssence, where its detailed
information is in Section 2, to model our process and process

can be structured by essential object (alpha), element activity
(activity) and element role (Competency). We present a model
in Figure 9 and define high-level, detailed-level and unit-levels
as alphas of our model. Thus, activities of planning and testing
are defined as activities of the model.

We compared our paper with Imoto[16] in order to show
our process model’s benefit and advantages. Artifacts used in
project evaluation model can show how properly the projects
evaluated by specific model. Table 2 shows R&D related
artifacts used in our proposed approach and Imoto’s[16].

(Table 2) ACTIVITIES AND ARTIFACTS

Approach Artifacts used
Planning Document, Annual Report,
Our approach Research Note, Meeting minute
Imoto[16] Planning Document

Imoto’s study used seven evaluation indices and they all
can be found in R&D project planning document. On the other
hand, our approach used other periodical and non-periodical
documents such as annual report, research note, meeting
minute. Those artifacts are useful for more proper evaluation
of R&D project and makes project real monitoring even
possible.

5. CONCLUSION

Software R&D colleagues should examine research
documents such as project planning document, annual report
and final report. And they should check development
documents like requirements specification, design description
and test program code. Thus, in this paper, we described a
test process with activities to validate artifacts produced in
software R&D. The process enables them to monitor the project
progress more effectively because the process utilizes
constantly generated artifacts.

However, we have to define more detailed activities to apply
our process to software R&D project. We also need a tool
to support our process. Therefore, we plan to define process
activities in detail. Finally, we will implement a tool to enact
a detailed test process which is modeled by Essence.

el

b= QIE{Hl HESE| (172423)

45

=
S

L

0ol
Lok

r

AE5e fIF
[9] P. Ng, and S. Huang, “Essence: A framework to help
bridge the gap between software engineering education
and industry needs,” In Proc. of IEEE 26th Conference

2ZEQI0f R&DOIA MES(EAML Z203)
on Software Engineering Education and Training

(CSEE&T), pp-304-308, 2013.
http://dx.doi.org/10.1109/cseet.2013.6595266
[10] B. Elvesater, G. Benguria and S. Ilieva, “A comparison
of the Essence 1.0 and SPEM 2.0 specifications for
software engineering methods,” In Proc. of the Third

References

[1] I Jacobson, S. Huangb, M. Kajko-Mattssonc, P.
McMahond, and E. Seymoure, “Semat—three year

vision,” Programming and computer software, vol. 38, no.
1, pp.1-12, 2012.
http://dx.doi.org/10.15514/syrcose-2011-5-inv
[2] I Jacobson, P. Ng, P. McMahon, 1. Spence and S Lidman,
“The essence of software engineering: the SEMAT
kernel,” Queue - Networks, vol. 10, no. 10, 2012.
http://dl.acm.org/citation.cfm?id=2389616

Workshop on Process-Based Approaches for Model-
Driven Engineering, no. 2, p. 2, 2013.
http://dx.doi.org/10.1145/2489833.2489835
[11] D. J. Han and H. S. Han, “Guidelines for Implementing
Configuration Management in Extreme Programming
based on CMML,” Journal of Internet Computing and

Services, vol. 9, no. 2, pp. 107-118, 2008.
[12] K. S. Lee and T. G. Lee, “A Software Development

Process of Core Instrumentation System Based on the

Rational Unified Process,” Journal of Internet Computing
and Services, vol. 5, no. 4, pp. 95-113, 2004.

[13] S. W. Shin, H. K. Kim and S. W. Kim, “Framework

for Improving Mobile Embedded Software Process,”

Journal of Internet Computing and Services, vol. 10, no.
[14] J. Cangussu, R. DeCarlo, A. MATHUR, “Using

[3] T. Sedano, and P. Cécile, "State-based Monitoring and
Goal-driven Project Steering: Field Study of the SEMAT
Essence Framework,” In Proc. of the 36th International
Conference on Software Engineering, pp.325-334, 2014.

5, pp. 195-209, 2009.
sensitivity analysis to validate a state variable model of

the software test process,” IEEE Transactions on Software
Engineering, vol. 29, no. 5, pp.430-443, 2003.

http://dx.doi.org/10.1145/2591062.2591155
[4] L Bumstein, A. Homyen, R. Grom, and CR Carlson, “A

http://dx.doi.org/10.1109/tse.2003.1199072
[15] K. H. Jin, S. M. Song, J. W. Lee and B. J. Lee, “Test

model to assess testing process maturity,” Crosstalk the
Journal of Defense Software Engineering, vol. 11, no. 11,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1

pp-6-30, 1998.
.434.1067&rep=repl&type=pdf

[5] T. Ericson, A. Subotic, and S. Ursing. “TIM - A Test
Improvement Model,” Software Testing Verification and

Reliability, vol. 7, no. 4, pp. 229-246, 1997.
Planning and Reporting for Constant Monitoring of
Software R&D Projects,” Korea Computer Congress,

http://dx.doi.org/10.1002/(sici) 1099-1689(199712)7:4<22
Vol. 42, No. 1, pp.597-599, 2015.
[16] S. Imoto, Y. Yoshiyuki and W. Junzo. “Fuzzy regression

9::aid-stvr149>3.3.co;2-d
[6] 1. Burnstein, S. Taratip, and C. Robert, “Developing a
testing maturity model for software test process
evaluation and improvement,” In Proc. of International
Test Conference, pp. 581 - 589, 1996.
http://dx.doi.org/10.1109/test.1996.557106
[7] E. van Veenendaal, J. Jaap Cannegieter, “Test Maturity
Model Integration (TMMi) Results of the first TMMi
benchmark - where are we today?”, pp.3, Euro Star
Software Testing Community, 2013.
[8] E. van Veenendaal, R. Grooff and R. Hendriks, “Test
Process Improvement using TMM,” Testing Experience:
The Magazine for Professional Testers, vol. 3, no. 19,

pp.21-25, 2008,
http://www.erikvanveenendaal .nl/NL/files/Test %20Proce
ss%20Improvement %20using %20TMM(i).pdf

model of R&D project evaluation.” Applied Soft
Computing, vol. 8, no. 3, pp.1266-1273, 2008.
http://dx.doi.org/10.1016/j.as0c.2007.02.024
[17] J. A. Kim, J. H. Kim, “Quality Assessment Framework
for Medical Device specific SW R&D Project.”
International Journal of Software Engineering and Its

Applications, vol. 8, no. 1, pp.371-376, 2014.

http://dx.doi.org/10.14257/ijseia.2014.8.1.32
2016. 4

46

ol
e
oh

SZEY 0| RADOIM LES(EAMRL Z20H) ASS 2IF

r

OXM X200

Olat=M= (Amarmend Dashbalbar)

2013 Mongolian University of Science and Technology % (3}Ah
20143~ @A ASAH S AFE At AAF A F

FA Rk AXE O] H2H, AAe] A2d

E-mail: amaraa2848 @gmail.com

0] 2 # (Eun-Chul Lee)

20073 tktielw AFE T 29 (34D
Ay 20143~ MNP AFEH 2 (HAD

BARE HAE Z2A A HAE ZH 9

E-mail: herolec @naver.com

0l d & (Jung-Won Lee)

19934 olstd ATt MAA AT 9] (SAh

1995 o|stqA gt HAAFE T £ (HAh

2003 olstofAtistn AFE T Y (A

2012+ - @A ofFhdtu AAF S Fus

A E-ok SOA, Ubiquitous Computing, Embedded Software and Software engineering
E-mail: jungwony @ajou.ac.kr

0] 4 A (Byunjeong Lee)

19903 M&thetw AxrEA s (8D

19983 Mgt it 48t EA3 D

20023 Metietn oiEhd A7) AFE TSR EAEAD
1902~8A A AU HFe sy a4

B Eok 2ZESOBI2E, £2ZES 0] 18, 2T EFo|F 3}

E-mail: bjlee@uos.ac.kr

ror
Hl
ro
o
o
0!
HT
b

5| (17223)

47

