
Journal of Internet Computing and Services(JICS) 2016. April: 17(2): 39-47 39

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동☆

Describing Activities to Verify Artifacts(Documents and Program) in
Software R&D

아마르멘드1 이 은 철1 이 정 원2 이 병 정1*1

Amarmend Eun-Chul Lee Jung-Won Lee Byeongjeong Lee

요 약

일반적으로 소프트웨어 R&D 프로젝트에서는 프로그램 코드와 문서 산출물이 생성된다. 이러한 소프트웨어 R&D 산출물들은 두

가지로 분류할 수 있다. 첫 번째 분류는 연차 실적 계획서, 연구개발과제계획서, 연구성과보고서, 연구 노트와 같은 소프트웨어 연구

산출물들이 포함된다. 그리고 다른 분류는 소프트웨어 요구사항 명세서, 소프트웨어 설계 명세서, 소프트웨어 테스트 계획서, 프로그
램 코드와 같은 소프트웨어 개발 산출물들이다. 프로젝트의 진행 방향을 확인할 때 프로그램 코드를 테스트하고 문서 산출물을 검증

하는 것이 중요하다. 또한 연구 문서와 개발 산출물 사이에 완전성, 일관성 등의 관계를 확인해야 한다. 그러한 검증과 테스트는 프로

젝트 관리자와 연구자들이 프로젝트를 진행하는 동안 올바르게 진행하고 있다는 확신을 준다. 그러므로 본 연구에서는 소프트웨어
R&D에서 생성되는 문서와 프로그램을 검증하는 프로세스를 제안한다. 본 프로세스는 문서 산출물을 검토하고 프로그램 코드를 테스

트하는 활동으로 구성되어 있으며, Essence를 사용하여 정의된다. 그리고 본 연구에서 제안하는 프로세스의 효율성을 사례 연구를

통해 보인다.

☞ 주제어 : 소프트웨어 연구개발, 검증 활동, Essence, 산출물 테스팅

ABSTRACT

In software R&D artifacts including documents and program code are produced. There are two kinds of software R&D artifacts:

Research artifacts and development artifacts. Research artifacts include software R&D planning document, annual report, final report,

research note and so on. Software development artifacts include software requirements, software design description, testing plan, test

report, and program code. It is important to verify the documents and to test code to check the direction of the R&D. Moreover,

we should check relationships as such completeness and consistency between research and development artifacts. The verification and

testing help project manager and researchers understand what they do during software projects. Therefore, in this study, we present

a process to verify documents and program in software R & D. In the process we check documents produced in software R&D and

test program code. We describe the process by using Essence elements including alpha, activity, and competency. We present a case

study to show the effectiveness of the process.

☞ keyword : Software R&D, Validation Activities, Essence, Artifact Testing

1. INTRODUCTION

1
 Dept. of Computer Science, University of Seoul, Seoul, 20504, Korea.

2 Dept. of Department of Electrical and Computer Engineering, Ajou
University, Suwon, 16499, Korea.

* Corresponding author (bjlee@uos.ac.kr)
[Received 30 November 2015, Reviewed 21 January 2016, Accepted
24 March 2016]
☆ This research was supported by Next-Generation Information

Computing Development Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Science,
ICT & Future Planning (NRF-2014M3C4A7030504), and by
Seoul Creative Human Development Program funded by Seoul
Metropolitan Government (No.CAC15106).

☆ A preliminary version of this paper was presented at APIC-IST 2015
and was selected as an outstanding paper.

Researchers and developers produce program code and

documents in software R&D. They examine documents and

code to monitor project progress and quality during software

project where they verify both the code and documents. The

purpose of this verification is to make contribution to software

testing activity. Artifacts of software R&D project are divided

into two groups. One is software research documents including

R&D planning document, annual report, final report, research

note and so on. The other includes software development

artifacts including requirement specification, design description,

test plan, test report, program code and so on.

Researchers and developers should check the documents

and test program code to confirm the direction of the R&D.

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2016.17.2.39

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

40 2016. 4

Moreover, they should investigate relationships as such

completeness and consistency between research and

development artifacts. Thus, they have to be aware of how

the verification goes. In this paper, we describe a test process

with activities to verify artifacts in software R&D project.

We use Essence framework by Object Management Group

for our process. Essence kernel has 6 alphas and every alpha

changes its status in case of activities of the alpha had fulfilled.

We use high-level test planning, detailed-level test planning,

unit-level test planning, unit testing, detailed-level testing and

high-level testing as alphas in our process.

The contribution of this paper is that we introduce a test

process that conforms to software R&D projects and both

software product and documents are able to be tested within

the process. Specifications are essential for successful software

testing, but other similar studies do not consider correctness

of the related documents and do not include any activities on

verifying specifications.

Remainder of the paper is structured as follows: Section

2 provides some basic information on relative technologies,

Section 3 contains a brief content of related works, Section

4 presents a test process we are introducing, Section 5 describes

the association of our process and Essence model and Section

6 illustrates conclusion of this paper and how our study will

continue in future.

2. RELATED WORK

2.1 ESSENCE

Essence [1-3] is a framework that presents the state of

software development progress and provides the common

ground for those diverse software engineering methods and

theories. Essence mainly consists of four parts such as

Methods, Practices, The Kernel and The Language. Method

is a set of Practices and it’s not just a description of what

is expected to be done, but a description of what is actually

done. A practice is a repeatable approach to doing something

with a specific objective in mind. The Essence Language is

the domain-specific language to define methods, practices and

kernels. Kernel contains Alphas, Activity Space and

Competencies. There are seven alphas in Essence Kernel that

are Stakeholders, Opportunity, Requirements, Software

System, Team, Way of Working and Work and each alpha

changes its state during the progress.

Seven alphas of essence kernel are grouped into three areas

of concern. Firstly, Opportunity and Stakeholder alphas are

included in Customer area. Solution area contains alphas that

Requirement and Software System. Lastly, Work, Team and

Way of Working alphas are included in Endeavour area. Every

alpha has its own states and those states shows the progress

of fulfillment of project development. Alphas contain the things

to do or Activity Spaces which need to be done in order to

change to next state of alpha. We used essence kernel for test

process model in our study and we created whole other new

alphas which are essential for our model. There is also

“Competencies” or “Abilities Needed” in the kernel, it

determines the competencies in each area, for example,

Analysis, Development and Testing are the needed abilities

of Solution area. Those competencies have five levels that

1-Assists, 2-Applies, 3- Masters, 4-Adapts and 5-Innovates.

2.2 TMM(i)

TMMi is test maturity reference model [4-6] which is

developed by TMMi foundation. Its structure is same as

Capability Maturity Model (CMM) and concept was firstly

introduced in 1996. TMMi was made to improve the testing

effectiveness and made it possible for organizations that they

determine their fulfillment and effectiveness of their testing.

A quality assurance framework is included in TMMi model

and it is used for connection that provides information on

concept and ideas between workers in large organization.

As shown in Figure 1, TMMi has five maturity levels which

are Initial, Managed Defined, Measured and Optimization.

Each level includes process areas which need to be done in

order to advance next level. Process areas contain two kinds

of practices which are Specific and Generic practices and both

the lowest unit of the TMMi model. Specific practice is

included only in one particular process area. Generic process

is a process which is connected to two or more process areas

so it means several process areas’ fulfillment is dependent to

one Generic Practice. There are also Specific and Generic

goals which indicate the purpose of specific and generic

practices and need to be satisfied by those practices when they

are done.

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

한국 인터넷 정보학회 (17권2호) 41

(Figure 1) TMMi LEVELS. [7]

2.3 ISO 29119

ISO 29119 is a standard for software testing standardized

by International Organization for Standardization in 2013. This

standard is consists of 5 parts such as Concepts and Definitions,

Test Processes, Test Documentation, Test Techniques and

Keyword Driven Testing. This standard was implemented in

order to draw the baseline for the testing discipline and settle

the conflict in current definition and processes. In our study

we use part 2 of the standard, test process which uses risk-based

approach. Firstly, the part 2 of ISO 29119 also includes Static

Test Process as fourth part. However, in recent update Static

Test Process part was removed and the part 2 has become

three layered model. The layers with their activities are shown

in Figure 2.

(Figure 2) LAYERS AND ACTIVITIES OF ISO

29119-2

The Organizational Test Process layer is divided into two

parts: Test policy and Test Strategy parts of Software Testing.

Test Management Process layer consists of three activities

which are Test Planning, Test Monitoring & Control and Test

Completion. In Test Planning activity, the test planning

document is generated and sent to Dynamic Test Process layer.

While Test Monitoring & Control activity checks the progress

of test process by test measures that sent from Dynamic Test

Process.

From Organizational Test Process layer Organizational Test

Strategy is passed to Test Management Process layer and Test

Management Process layer feedback to the Organizational Test

Process layer. Thus, Test Management Process layer produces

Level Test Plans based on Test Strategy and passes it to the

Dynamic Test Process layer with Control Directives. Lastly,

Dynamic Test Process layer passes the test measures to Test

Management Process layer after testing activities are finished

on all levels.

We utilize a study [8] about Test Maturity Models while

we study software testing field. TMMi is a test maturity model

developed by TMMi foundation for the purpose of determining

testing quality by organization itself. We considered TMMi

has some similar prospects and so we researched related papers

to TMMi. Since 2007, Erik van Veenendaal published number

of papers on test process improvement and introduced TMMi

as the reference model.

In 2013 Pan-Wei Hg et al. [9] raised a problem by his

paper about how the student’s knowledge that learned in

college differs from employee’s requirement. He mentioned

in his paper that the lack of framework makes it hard to

understand and compare the college education system and

industry needs. Pan-Wei Hg suggested Essence can be bridge

among the gap between industry, research and education.

B. Elvesæter et al. [10] illustrates Essence Kernel and

Language and how they we used in the study. This study shows

key language concept difference between SPEM and Essence

- which both OMG projects. The comparison is based in

REMICS project and result showed in spite of both developed

by same author they have some key differences in method.

From this paper we have obtained some useful knowledge

about Essence 1.0 and SPEM 2.0 and gap between them.

D. J. Han et al. [11] is a study which describes guidelines

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

42 2016. 4

for implementing Capability Mature Model Integration

(CMMI) based configuration management in Extreme

Programming (XP). Therefore, this paper provides basic

knowledge on CMMI and Extreme Programming and

configuration management (CM) practices of CMMI were

redefined in order customize them for XP. This study was

useful for our research because we are developing a

TMMi-based software test process where TMMi and CMMI

are conceptually similar.

K. S. Lee et al. [12] proposed a software development

process that based on Rational Unified Process (RUP). The

proposed process is a tailored version of RUP for Korean Core

Instrumentation System. They evaluated the result by with

typical waterfall lifecycle model and RUP.

In S. W. Shin et al. [13], a number of improvement models

were used such as SPICE(Software Process Improvement and

Capability dEtermination) and CMMI which is can be used

for improving quality of mobile embedded software. In this

paper, XP is also used because it has the iteration development

feature. Thus, authors proposed a XP-based software process

improvement framework that can achieve CMMI level 2 or 3.

J. A. Kim [17] proposed a quality assessment framework

for evaluating medical software R&D Project. Authors

identified the critical features of medical device software such

as safety, standardization and continuing change. Those

features are used for evaluation of medical software R&D

project. However, the study limited to focus on only the

medical field of R&D.

3. DEFINING TEST PROCESS IN

SOFTWARE R&D PROJECT

3.1 TEST PROCESS FOR SOFTWARE

RESEARCH DOCUMENTS

Test Process for R&D Project tests document artifacts such

as planning document, annual report and final report which

are sequentially made from testing activities. At planning level,

researcher creates planning document which includes content

like overall plan, final research goal and annual research goal.

Thus, it is verified by tester and result will be informed to

researcher.

(Figure 3) TEST PROCESS FOR R&D PROJECT

According to contents in Planning document submitted,

research progress and next year plan are verified by researcher

submits annual report every year. Finally, the end of research,

research result is verified by contents of final report.

R&D Test Process documents are classified into periodical

and non-periodical documents as showed in Figure 3.

In Figure 3, the documents which are used for software

testing are in bold frame. Planning document and Final report

are non-periodical documents that both are tested once in

project lifetime. Annual Report is tested every year because

it is documented every year needed to be tested periodically.

As shown in Figure 3, the periodical documents like

monthly/weekly report and also non-periodical documents such

as meeting minutes, research note are generated through R&D

process but not used for software testing. The documents that

are not used in software testing like Monthly/weekly report,

meeting minute and research note are written in free form and

simple example is shown in Figure 4.

(Figure 4) EXAMPLE OF RESEARCH NOTE

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

한국 인터넷 정보학회 (17권2호) 43

Research documents not used for testing, shown in Figure

4, are helpful for monitoring project progress because they are

produced constantly during the progression of project unlike

non-periodical documents such as planning document, annual

report and final report.

Therefore, in this paper, the test process for software R&D

includes testing activities which are based on those

non-periodical documents such as meeting minutes, research

note and weekly report submitted constantly. Usage of periodical

documents in testing makes it possible to monitor project

progress effectively. Therefore, they are used as additional

information for accurate testing in each level of test process.

3.2 TEST PROCESS FOR SOFTWARE

DEVELOPMENT

Software development is required to be tested often for the

reason that invisibility feature of software [14]. Therefore,

software development test process is based on common model

V&V (Verification and Validation). The verification level of

V&V test process consists of acceptance test planning, system

test planning, integration test planning and software unit test

planning. Thus, validation level consists of acceptance testing,

system testing, integration testing and software unit testing.

(Figure 5) SOFTWARE V&V PROCESS

As pointed by arrow in Figure 5, Acceptance test plan is

associated with acceptance testing activity and system test plan

is associated with system testing activity respectively and so

on. If test plan and test activities are structured like this pattern

in the process we introduced, complex software artifacts can

be tested more precisely.

(Figure 6) ARTIFACTS IN SOFTWARE V&V

PROCESS

As shown in Figure 6, only source code items are not

enough for software development testing also various

document artifacts are required. There are development

documents like Software Design Description (SDD) and

Software Requirement Specification (SRS) which associated

to both test planning and test activities. There are also SW

Product that provides source code which is considered as

software related artifact and document artifacts such as

Software Test Plan (STP) and Software Product Specification

(SPS).

Figure 6 shows dependencies between software activities

and software artifacts. SRS contains user requirements

analyzed by researcher and it can be used in system testing

and acceptance testing. SDD includes items like module design

and software structure. Thus, SDD is used in integration test

plan level and also used in unit testing and integration testing

levels. The artifacts that SPS, STP and SW product are used

in all validation activities.

We are introducing a test process that contains both V&V

planning and testing activity because we set software R&D

as our target. This test process utilizes software development

documents such as SRS, SDD and SPS.

3.3 TEST PROCESS FOR SOFTWARE

R&D PROJECT

We define the process that tests not only software research

artifacts but also software development artifacts by analyzing

both software R&D test process and software test process. The

software R&D test process is based on TMMi model and ISO

29119-2 standard.

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

44 2016. 4

The activities of software R&D test process levels are

defined by activities of R&D process and software test process.

Figure 7 shows activities of high level test plan, detailed level

test plan and unit level test plan as test planning activities.

Testing activities such as high level testing, detailed level

testing and unit level testing are also shown.

(Figure 7) DEFINITION OF TEST PROCESS

ACTIVITIES

System test plan and acceptance test plan for testing R&D

planning document are defined as High level test plan. The

annual report test plan and integration test plan are defined as

detailed-level test plan. The research note test plan and unit

test plan defined as unit-level test plan. High-level testing

examines the final report and software system. Detailed-level

testing examines the annual report and software integration. And

unit-level testing confirms research note and software module.

(Figure 8) SOFTWARE R&D TEST PROCESS

Structure and cycle of the proposed process is shown in

Figure 8. The test process needs to be performed the high-level

testing activity with project management related documents and

software related documents. After high-level testing activity

is finished, the detailed level test plan, unit level test plan,

detailed level testing and unit level testing activities will be

performed repeatedly. In last stage of process, comprehensive

testing will be performed in High-level testing activity.

(Table 1) ACTIVITIES AND ARTIFACTS

Software R&D
Test Activity

Artifacts(input → output)

High-Level Test
Planning

R&D Project Plan with Template, Software
Requirement Specification(SRS)
→ Software Lifecycle Test Plan (for Project Plan
and System Testing)

Detailed-Level
Test Planning

Project Annual Report Template, Software
Design Description(SDD)
→ Software Lifecycle Test Plan (for Annual
Report Items and Integration Testing)

Unit-Level Test
Planning

Project Research Note Template, SDD
→ Software Lifecycle Test Plan (for Research
Note and Unit Testing)

Unit-Level Test

Software Lifecycle Test Plan, Research Note,
Program Code
→ Software Lifecycle Test Report (for Research
Note and Unit Testing)

Detailed-Level
Test

Software Lifecycle Test Plan, Project Annual
Report, Program Code
→ Software Lifecycle Test Report (for Annual
Report and Integration Testing)

High-Level Test

Software Lifecycle Test Plan, Project Final Report,
Program Code
→ Software Lifecycle Test Report (for Final
Report and System Testing)

Input documents are defined for each by activities of

software R&D test process. During the planning activities of

the process is being performed, the Software Life-Cycle Test

Plan(SLTP) is generated and used in the next activities such

as high-level test, detailed-level test and unit-level test.

After test activities performed and concluded as instructed

in SLTP, the test result is shown through Software Life-Cycle

Test Report (SLTR). Table 1 shows all input and output

documents of process activities.

3.4 DOCUMENTATION OF TEST PROCESS

The proposed test process has test planning document and

test result document, SLTP and SLTR [15]. SLTP includes

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

한국 인터넷 정보학회 (17권2호) 45

contents that related to planning of software testing such as

test strategy, risk approach, test environment requirement, test

case and scenario etc.

SLTR contains test result of both software product and

document artifacts. The test results of three levels are shown

separately. For example, software test result of High-level

testing is shows by 6 metrics that defined in Software Quality

standard ISO9126. The quality software product is evaluated

by its functionality, reliability, usability, efficiency,

maintainability and portability. On the other hand, document

artifacts are evaluated by three metrics, Traceability,

Completeness and Consistency.

4. CASE STUDY: MODELING TEST

PROCESS USING ESSENCE

In software process modeling field, there are two

well-known software process modeling languages, SPEM and

Essence, both created by Object Management Group. We used

a comparative study [10] in order to make a choice for which

one best suits our process. In the comparative study, SPEM

language architecture has some shortage in process enactment.

On the other hand, Essence contains some better concept and

structure for supporting enactment.

(Figure 9) TEST PROCESS MODEL IN ESSENCE

Therefore, we choose Essence, where its detailed

information is in Section 2, to model our process and process

can be structured by essential object (alpha), element activity

(activity) and element role (Competency). We present a model

in Figure 9 and define high-level, detailed-level and unit-levels

as alphas of our model. Thus, activities of planning and testing

are defined as activities of the model.

We compared our paper with Imoto[16] in order to show

our process model’s benefit and advantages. Artifacts used in

project evaluation model can show how properly the projects

evaluated by specific model. Table 2 shows R&D related

artifacts used in our proposed approach and Imoto’s[16].

(Table 2) ACTIVITIES AND ARTIFACTS

Approach Artifacts used

Our approach
Planning Document, Annual Report,

Research Note, Meeting minute

Imoto[16] Planning Document

Imoto’s study used seven evaluation indices and they all

can be found in R&D project planning document. On the other

hand, our approach used other periodical and non-periodical

documents such as annual report, research note, meeting

minute. Those artifacts are useful for more proper evaluation

of R&D project and makes project real monitoring even

possible.

5. CONCLUSION

Software R&D colleagues should examine research

documents such as project planning document, annual report

and final report. And they should check development

documents like requirements specification, design description

and test program code. Thus, in this paper, we described a

test process with activities to validate artifacts produced in

software R&D. The process enables them to monitor the project

progress more effectively because the process utilizes

constantly generated artifacts.

However, we have to define more detailed activities to apply

our process to software R&D project. We also need a tool

to support our process. Therefore, we plan to define process

activities in detail. Finally, we will implement a tool to enact

a detailed test process which is modeled by Essence.

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

46 2016. 4

References

[1] I. Jacobson, S. Huangb, M. Kajko-Mattssonc, P.

McMahond, and E. Seymoure, "Semat―three year

vision," Programming and computer software, vol. 38, no.

1, pp.1-12, 2012.

http://dx.doi.org/10.15514/syrcose-2011-5-inv

[2] I Jacobson, P. Ng, P. McMahon, I. Spence and S Lidman,

“The essence of software engineering: the SEMAT

kernel,” Queue - Networks, vol. 10, no. 10, 2012.

http://dl.acm.org/citation.cfm?id=2389616

[3] T. Sedano, and P. Cécile, "State-based Monitoring and

Goal-driven Project Steering: Field Study of the SEMAT

Essence Framework," In Proc. of the 36th International

Conference on Software Engineering, pp.325-334, 2014.

http://dx.doi.org/10.1145/2591062.2591155

[4] I. Burnstein, A. Homyen, R. Grom, and CR Carlson, “A

model to assess testing process maturity,” Crosstalk the

Journal of Defense Software Engineering, vol. 11, no. 11,

pp.6-30, 1998.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1

.434.1067&rep=rep1&type=pdf

[5] T. Ericson, A. Subotic, and S. Ursing. "TIM - A Test

Improvement Model," Software Testing Verification and

Reliability, vol. 7, no. 4, pp. 229-246, 1997.

http://dx.doi.org/10.1002/(sici)1099-1689(199712)7:4<22

9::aid-stvr149>3.3.co;2-d

[6] I. Burnstein, S. Taratip, and C. Robert, "Developing a

testing maturity model for software test process

evaluation and improvement," In Proc. of International

Test Conference, pp. 581–589, 1996.

http://dx.doi.org/10.1109/test.1996.557106

[7] E. van Veenendaal, J. Jaap Cannegieter, “Test Maturity

Model Integration (TMMi) Results of the first TMMi

benchmark - where are we today?”, pp.3, Euro Star

Software Testing Community, 2013.

[8] E. van Veenendaal, R. Grooff and R. Hendriks, "Test

Process Improvement using TMMi," Testing Experience:

The Magazine for Professional Testers, vol. 3, no. 19,

pp.21-25, 2008.

http://www.erikvanveenendaal.nl/NL/files/Test%20Proce

ss%20Improvement%20using%20TMM(i).pdf

[9] P. Ng, and S. Huang, "Essence: A framework to help

bridge the gap between software engineering education

and industry needs," In Proc. of IEEE 26th Conference

on Software Engineering Education and Training

(CSEE&T), pp-304-308, 2013.

http://dx.doi.org/10.1109/cseet.2013.6595266

[10] B. Elvesæter, G. Benguria and S. Ilieva, “A comparison

of the Essence 1.0 and SPEM 2.0 specifications for

software engineering methods,” In Proc. of the Third

Workshop on Process-Based Approaches for Model-

Driven Engineering, no. 2, p. 2, 2013.

http://dx.doi.org/10.1145/2489833.2489835

[11] D. J. Han and H. S. Han, “Guidelines for Implementing

Configuration Management in Extreme Programming

based on CMMI,” Journal of Internet Computing and

Services, vol. 9, no. 2, pp. 107-118, 2008.

[12] K. S. Lee and T. G. Lee, “A Software Development

Process of Core Instrumentation System Based on the

Rational Unified Process,” Journal of Internet Computing

and Services, vol. 5, no. 4, pp. 95-113, 2004.

[13] S. W. Shin, H. K. Kim and S. W. Kim, “Framework

for Improving Mobile Embedded Software Process,”

Journal of Internet Computing and Services, vol. 10, no.

5, pp. 195-209, 2009.

[14] J. Cangussu, R. DeCarlo, A. MATHUR, “Using

sensitivity analysis to validate a state variable model of

the software test process,” IEEE Transactions on Software

Engineering, vol. 29, no. 5, pp.430-443, 2003.

http://dx.doi.org/10.1109/tse.2003.1199072

[15] K. H. Jin, S. M. Song, J. W. Lee and B. J. Lee, “Test

Planning and Reporting for Constant Monitoring of

Software R&D Projects,” Korea Computer Congress,

Vol. 42, No. 1, pp.597-599, 2015.

[16] S. Imoto, Y. Yoshiyuki and W. Junzo. "Fuzzy regression

model of R&D project evaluation." Applied Soft

Computing, vol. 8, no. 3, pp.1266-1273, 2008.

http://dx.doi.org/10.1016/j.asoc.2007.02.024

[17] J. A. Kim, J. H. Kim, "Quality Assessment Framework

for Medical Device specific SW R&D Project."

International Journal of Software Engineering and Its

Applications, vol. 8, no. 1, pp.371-376, 2014.

http://dx.doi.org/10.14257/ijseia.2014.8.1.32

소프트웨어 R&D에서 산출물(문서와 프로그램) 검증을 위한 활동

한국 인터넷 정보학회 (17권2호) 47

◐ 저 자 소 개 ◑

아마르멘드 (Amarmend Dashbalbar)

2013년 Mongolian University of Science and Technology 졸업 (학사)

2014년~ 현재 서울시립대학교 컴퓨터과학과 석사 재학 중
관심분야: 소프트웨어 테스팅, 결함관리 시스템
E-mail: amaraa2848@gmail.com

이 은 철 (Eun-Chul Lee)

2007년 안양대학교 컴퓨터공학과 졸업 (학사)

2014년~ 서울시립대 컴퓨터과학과 졸업 (석사)

관심분야: 테스트 프로세스, 테스트 프레임워크
E-mail: herolec@naver.com

이 정 원 (Jung-Won Lee)

1993년 이화여자대학교 전자계산학과 졸업 (학사)

1995년 이화여자대학교 전자계산학과 졸업 (석사)

2003년 이화여자대학교 컴퓨터공학 졸업 (박사)

2012년 - 현재 아주대학교 전자공학과 부교수
관심분야: SOA, Ubiquitous Computing, Embedded Software and Software engineering

E-mail: jungwony@ajou.ac.kr

이 병 정 (Byunjeong Lee)

1990년 서울대학교 계산통계학과 졸업(학사)

1998년 서울대학교 대학원 전산과학과 졸업(석사)

2002년 서울대학교 대학원 전기 컴퓨터공학부 졸업(박사)

1902～현재 서울시립대학 컴퓨터과학부 교수
관심분야: 소프트웨어테스트, 소프트웨어 진화, 소프트웨어공학
E-mail: bjlee@uos.ac.kr

